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Résumé

L'objectif de cette thèse est de traiter trois problèmes relatifs aux réseaux de
grande taille. Les outils utilisés à cette �n sont issus des probabilités et plus spé-
ci�quement de la théorie des �les d'attente. En plus d'améliorer la compréhension
des systèmes étudiés, les travaux réalisés dans cette thèse ont permis de prouver
des résultats théoriques nouveaux ainsi que d'illustrer certains phénomènes proba-
bilistes.

Dans le Chapitre II, un modèle de réseau à partage de bande passante est étudié.
Contrairement à ce qui avait été étudié dans la littérature, les utilisateurs n'utilisent
pas de contrôle de congestion. On suppose qu'ils envoient des données avec un débit
maximum et protègent leur transmission à l'aide d'un mécanisme basé sur des codes
correcteurs d'erreur. Le modèle obtenu est analysé pour deux topologies de réseaux
spéci�ques : les réseaux linéaires et les arbres montants. À l'aide de limites �uides,
les conditions de stabilité de ces réseaux sont établies. Ces limites �uides donnent
lieu à un phénomène intéressant de moyennage stochastique. Ensuite, une autre
méthode de renormalisation est utilisée pour prouver que la région de stabilité de
ces processus converge vers la région optimale lorsque que les débits maximaux des
utilisateurs deviennent in�niment petits par rapport à la taille des liens du réseau.

Dans le Chapitre III, on se propose d'étudier CSMA/CA, un algorithme d'accès
implémenté dans certains standards de réseaux sans �l. Chaque lien est constitué
d'un émetteur et d'un récepteur et un graphe d'interférence modélise les collisions
potentielles entre les liens. Les arrivées et les départs de ces derniers sont prises
en compte. Une approximation est faite en supposant que la dynamique d'accès au
canal est in�niment plus rapide que la dynamique des arrivées et départs de liens.
Il est alors établi que le CSMA permet une utilisation optimale des ressources radio
dans le cadre des réseaux ad-hoc. Cependant, il est également prouvé que ce même
algorithme n'est pas e�cace pour les réseaux avec une station de base ; dans ce cas,
un biais en faveur des transmissions vers la station de base est observé. À la �n du
chapitre, l'hypothèse simpli�catrice est discutée.

Les deux derniers chapitres de la thèse sont consacrés à l'étude d'un grand sys-
tème distribué de stockage de données avec pertes. L'objectif est d'estimer la vitesse
de perte des �chiers ou la durée de vie d'un �chier donné. Dans le Chapitre IV,
c'est le premier point de vue qui est adopté. Le système est considéré de manière
globale. Le système est constitué d'un grand nombre de �chiers qui peuvent avoir
chacun deux copies au maximum. Chaque copie disparaît au bout d'un temps aléa-
toire. Un mécanisme centralisé de sauvegarde permet alors de restaurer les copies
perdues. Un �chier dont les deux copies ont été détruites est dé�nitivement perdu.
Le système est étudié dans le cas limite où le nombre de �chiers tend vers l'in�ni.
A�n de décrire correctement le système, trois échelles de temps di�érentes sont
étudiées. Ralentir le temps permet de comprendre le mécanisme de sauvegarde ;
laisser le temps inchangé permet de dé�nir la capacité du système ; accélérer le
temps permet d'évaluer la vitesse de perte des �chiers. Le principe de moyennage
stochastique est également observé à l'échelle de temps la plus rapide.
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Dans le chapitre V, le point de vue d'un �chier donné est adopté. Des liens sont
établis avec les modèles classiques d'Ehrenfest, issu de la physique statistique, et
d'Erlang, issu des télécommunications. Des méthodes basées sur les martingales sont
utilisées pour calculer la transformée de Laplace des temps d'atteinte de ces deux
processus. Ces transformées permettent alors d'estimer le comportement asympto-
tique de ces temps d'atteinte et notamment le temps de disparition d'un �chier.



Abstract

The purpose of this thesis is to tackle three problems inspired by large dis-
tributed systems. The tools used for that purpose come from probability and more
speci�cally queueing theory. The studies led during this thesis allowed to under-
stand the behavior of the observed systems and algorithms but also to prove some
interesting theoretical results and to emphasize some probabilistic phenomena.

In Chapter II, a bandwidth sharing network model is analyzed. Contrary to
what has been studied in the literature, users do not use a congestion control
mechanism; they are assumed to send data at their maximum rate and to protect
their transmission against loss thanks to some error code. The obtained model is
analyzed for two di�erent topologies: linear networks and upstream trees. Using
�uid limits, the stability condition of these networks is obtained. Due to these
�uid limits, an interesting stochastic averaging phenomenon arises. Another scaling
method is used to prove that the stability condition of these networks tends to the
optimal one when the maximal rate of users is in�nitely smaller than the links
capacity.

In Chapter III, CSMA/CA, a classical channel access algorithm for wireless
networks, is studied. Each link consists in a sender/receiver pair and an interference
graph models potential collisions between links. Link arrivals and departures are
taken into account by the model. An approximation is made by assuming that
the channel access dynamics is in�nitely faster than link arrivals and departures
dynamics. It is proved that CSMA results in an optimal use of radio resources
for ad-hoc networks. However, it is also established that this algorithm is not
e�cient for infrastructure-based networks where a bias in favor of upstream tra�c
is observed. At the end of the chapter, the time-scale separation assumption is
discussed.

The last two chapters of this thesis are dedicated to the study of a large dis-
tributed storage system with failures. The purpose is to estimate the decay rate of
the system or the durability of a given �le. In Chapter IV, the �rst point of view is
studied. The system is then considered as a whole. It consists in a large set of �les
which can have two copies. Each copy is lost after a random time. A centralized
back-up mechanism allows to restore lost copies. A �le with no copy is de�nitively
lost. The system is analyzed when the number of �les grows to in�nity. In order
to describe correctly its behavior, three di�erent time-scales are considered. The
slow time-scale allows to describe the back-up mechanism; the normal time-scale
to de�ne the capacity of the system and the fast time-scale to evaluate the decay
rate. The stochastic averaging principle is also observed on the fast time-scale.

In Chapter V, the point of view of a �le is taken. Links are established with the
classical Ehrenfest and Engset models, from statistical physics and telecommunica-
tion. Exponential martingales methods are used to compute the Laplace transform
of hitting times. The asymptotic behavior of these hitting times, in particular the
durability of a �le, is then estimated.
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1. Preamble

The global telephone network was the �rst machine built on a very large scale.
It can be considered as a single machine since it is tightly coupled and, after all,
its aim is to connect two telephones anywhere in the world. However, the global
telephone network is no longer the largest network in use today. Slowly, it has been
integrated in a much larger network: the Internet, where the tra�c is not limited
to voice but also includes data and, notably, an exponentially increasing volume
of video. One could think that the Internet is just a communication network like
the telephone network with di�erent communication technologies since the aim is
still almost the same: connecting two devices anywhere in the world. However,
the nature of those two networks is completely di�erent. Typically, the telephone
network is deployed and managed by a single entity, the network operator. It
is then designed globally and most of the design patterns assume that there is
a central authority. The Internet has been designed with a completely di�erent
paradigm since no central authority is assumed and the network is supposed to
operate in a fully distributed way. On the long-time scale, the deployment of
the infrastructure has been decided by each actor individually with essentially no
global coordination. On a short time scale, tra�c management is performed by all
involved actors including the �nal users. The complexity of the Internet is then
several orders of magnitude beyond the complexity of the telephone network.

Furthermore, if the initial aim of the Internet was to connect two devices any-
where in the network, it is clearly not the case anymore. New usages have emerged
and with them new complex systems with a very large scale. One can think about
peer-to-peer networks as the �rst example. Here the aim is not to connect two
machines but to get a speci�c �le whoever the person transmitting the �le. The
number of examples is growing quickly in the last years with data centers, content
oriented networks and cloud computing for instance.

Operating this huge system requires to solve design issues of di�erent natures.
One of the main concerns of a network operator is dimensioning. It seems natural
that the bigger the network, the better the quality of service. However, building
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2 I. INTRODUCTION

a network is very expensive and the goal of the network operator is to build the
smallest possible network that ensures an acceptable quality of service. This last
notion is not clearly de�ned and raises the question of de�ning meaningful and
tractable performance metrics. Moreover, it appears that increasing the capacity
of the network is not su�cient and it is necessary to design implementable and
scalable tra�c control mechanisms that ensure an e�cient use of the available
capacity, this last notion being loosely de�ned at this point.

The aim of network performance analysis is to establish mathematical tools
that de�ne precisely some questions in this domain. The analysis of those models
can provide some insight into how to address these issues. It allows us to establish
dimensioning rules for networks but also design rules for the algorithms which are
in operation in those large-scale systems. In this thesis, we propose to tackle three
problems which are representative of this method. The �rst problem consists in
evaluating the impact on the Internet of replacing congestion control by an error
recovery mechanism. The second problem consists in evaluating the e�ciency of a
channel allocation algorithm in wireless networks. Finally, the last problem is to
evaluate �le resilience in a large distributed storage system with failures.

The organization of the introduction is as follows. We begin with a short
history of modeling in the telephone network for the purpose of illustrating network
performance evaluation. The bandwidth sharing networks are then introduced as a
good representation of packet-switching networks. A detailed description of some
models of wireless networks is given, followed by some discussions on the modeling
of recent large-scale systems. Finally, we introduce in detail the mathematical tools
that are used in this thesis. We conclude this introduction by a short description
of the content of the di�erent chapters of this thesis.

2. From Circuit Switching to Packet Switching

2.1. Circuit Switching: Erlang and Engset. As we said, network performance
analysis was born at the beginning of the 20th century with the development of
the �rst telephone networks. Basically, a telephone network can be seen as a set
of circuits (or lines) which users access and that they keep busy during all the
communication. For several decades, a physical circuit was created by operators on
the route between users and preserved until the end of the communication. Today,
no physical circuit is created but the principle remains in both wired and cellular
phone networks. An incoming call is then accepted if there is a free circuit on each
link on the route between the two users. If not, the call is rejected and the caller
can try later hoping for another communication to end in the meantime. If we
put aside the quality of the transmission and the reliability of the multiple devices,
the quality of service that is perceived by users is the frequency at which a call is
rejected, in other words, the blocking probability.

It is clear that the more circuits are used in the network, the lower the blocking
probability; however, building a network is expensive. For that reason, two Scan-
dinavian engineers, Engset and Erlang proposed independently two mathematical
models to evaluate the blocking probability of a phone switch connecting N users to
the rest of the world through C lines, as represented on Figure 1. Each user makes
on average θ calls per minute with an average duration of σ minutes. A rule of
thumb would be to say that there are, on average, Nθσ simultaneous calls, so that
it is su�cient to take the smallest number of lines C such that C > Nθσ. However,
with such a method, we do not take into account the random behavior of users
and we are then unable to evaluate the blocking probability. For this reason, En-
gset and Erlang proposed two mathematical models based on the theory of Markov
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processes for a telephone switch and two very similar formulas for calculating the
blocking probability of a phone call.

Figure 1. A telephone switch.

Engset proposed in [Eng98] what is maybe the most natural model. Indeed,
he assumed that each user alternates between a communication of random duration
with mean σ and an idle period of random duration with mean τ . At the end of
each idle period, the user tries to make a call and if it is rejected, she starts a new
idle period. In order to use the Markov theory, Engset assumed that the duration
of communication and idle periods have exponential distributions. The behavior of
such a system can then be described by a Markov process and Engset obtained the
following formula for the blocking probability, with β = σ/τ ,

B =

(
N−1
C

)
βC

1 + β + · · ·+
(
N−1
C

)
βC

.

In fact, it has been proved later that the assumption of exponential distributions for
communication durations and idle periods is not necessary and the previous formula
remains true with general non-lattice distributions (see [Bon07], for instance).

Erlang had a slightly di�erent approach and he proposed in [Erl09] his famous
model of a telephone switch. For that purpose, he made two assumptions. The
�rst one is that users behave independently and that call arrivals can then be
modeled by a Poisson process of intensity λ = N/τ . The other one is that each call
duration is an exponential random variable of mean σ. The system can then be
mathematically described by a Markov process and Erlang obtained in [Erl17] the
following formula for the blocking probability, with the tra�c intensity α = λ× σ:

(2.1) B = E(α,C) =
αC/C!

1 + α+ · · ·+ αC/C!
.

Inverting the previous formula, we are then able to derive the minimal number of
circuits for a target blocking probability given the tra�c intensity. It has been later
established by Takács [Tak69] that the assumption of the exponential duration
of calls is not necessary and the Erlang formula remains true in a more general
framework. On the contrary, the assumption of independence between the users is
crucial but veri�ed in practice.

We de�ne the load respectively as ρ = Nβ/C and as ρ = α/C for the Engset
and Erlang models. It appears that, at any given load, the Engset Formula always
results in a lower blocking rate than the Erlang Formula: the Erlang Formula is
the worst case and can always be used for dimensioning. Furthermore, at constant
load, when the number of users N grows to in�nity, the Engset Formula converges
to the Erlang Formula. These last two statements are illustrated by Figure 2. This
explains why the Erlang formula, simpler and more conservative, is commonly used
in practice.
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Figure 2. The Engset Formula and the Erlang Formula.

2.2. Extensions of Erlang Model. For a long period, the only existing networks
were the telephone networks with the principle of circuit switching. The pioneering
works of Engset and Erlang led to an entire �eld of research with many extensions
of both models. We introduce here two extensions of the Erlang model and justify
the need for them.

In 1965, Gimpelson proposed a multiclass Erlang model in [Gim65]. This
model has been developed at a time where the Integrated Services Digital Network
(ISDN) was emerging and the telephone network started to be used to transfer
data �ows over several circuits in parallel. In this model, users are divided into
classes such that �ows of each class arrive according to a Poisson process and have
an exponential duration and require an arbitrary number of circuits. When a �ow
arrives and there are not enough free circuits, the �ow is blocked and lost. As
for the Erlang Model, we are able to derive an explicit expression for the blocking
rate of each class. However, this formula is very di�cult to compute since a naive
approach has a complexity of order O(CK) where C is the number of circuits and K
the number of classes. Fortunately, a recursive formula with a complexity O(CK)
has been derived by Kaufman in [Kau81] and by Roberts in [Rob81]. Due to
its low complexity, this formula has been used extensively in the 80s for ISDN
dimensioning.

Despite its more general scope, the previous model still applies to a single tele-
phone switch and we reach the limits of this model when we want to understand the
interactions between di�erent classes of users on a more complex network topology.
As soon as a network with more than a single link is considered, another problem
arises: the routing. We do not address this issue and the routes are assumed to be
known and static. This is typically the case in a telephone network where the rout-
ing tables are computed in a centralized way taking into account the topology of
the network and tra�c statistics. This assumption allows to build a simple class of
models of telephone network with multiple links, called loss networks. This subject
is very well introduced by Kelly in [Kel91].

In loss networks, users are divided into classes which are identi�ed by the route
in the network and the required number of circuits per user. A call is accepted in
the network if there are enough available circuits in all links on its route. Otherwise,
it is blocked and lost. As previously, calls arrive according to a Poisson process and
have exponential durations. By studying the underlying Markov process, we are
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able to derive a closed-form expression for the blocking probability of each class of
calls.

The complexity to compute those probabilities is prohibitive in many practical
situations. But contrary to the previous case, it is virtually impossible to �nd an
e�cient computation method. Despite having a closed-form expression for blocking
rates, we are unable to use it directly. A usual approximation consists in consid-
ering the impact of each link individually and assuming that the blocking events
of the di�erent links are independent. Some studies have been done in order to
justify this approximation. Whitt has proven in [Whi85] that this approximation
is conservative, the obtained blocking rate is bigger than the actual one. However,
this is not true in the multi-rate case. In [Kel91], Kelly gives an intuition of why
this approximation is accurate when the load of each link is greater than 1 and
the number of circuits very large. A proof has been provided by Theberge et al.
in [TSM98] but only for some speci�c cases. Today, the general problem remains
open.

2.3. Emergence of Distributed systems. Despite being the �rst large scale
machine, the telephone network is still highly centralized. The deployment of the
networks is planned and decided by the network operator who has a global vision of
the situation. When operating, the routing schemes are typically chosen by �nding
the solution of a huge optimization problem in order to minimize the costs and use
e�ciently all the available resources.

The main drawback of such an architecture is that it is di�cult to adapt to
major changes such as a link failure. Furthermore, the bigger the network, the
more intricate the di�erent optimization problems to solve. It is then more and
more di�cult to increase the size of the network. For all these reasons, most of the
large-scale systems in use today incorporate distributed mechanisms which allow
to scale the system and to react rapidly to any major event.

In the following, we present three of these systems. Firstly, we introduce packet-
switching networks which use distributed tra�c control and routing mechanisms.
However, most packet-switching networks are deployed and operated by network
operators which perform some optimization in order to minimize the costs. The
second example presented are wireless networks which are fully distributed since
they are deployed and operated by users without any coordination, which means
no centralized mechanism can be used in practice. Finally, we present a large-scale
distributed mechanism which corresponds to di�erent systems. However, due to its
very large scale, any centralized mechanism seems unrealistic.

3. Bandwidth Sharing Networks Modeling

3.1. Queues and Queueing Networks. For a long period of time, telephone
networks were the only real communication networks and, more generally, the only
real information systems in service. After 1960, the emergence of computers and
computer networks o�ered new systems to study and model. During that period,
the most usual system consisted of a main frame able to compute tasks one after
another and people were primarily interested in evaluating the capacity of the sys-
tem and the delays encountered by a task submitted in the system. For studying
such a system, the natural framework is the queueing theory which was already
fairly developed at that time.

The simplest model for such a system is the M/M/1 queue, according to the
classi�cation introduced by Kendall in [Ken53]. In an M/M/1 queue, tasks arrive
according to a Poisson process of parameter λ and each task needs a service time
which is an exponential random variable of parameter µ. This is enough to de�ne a
Markov process describing the number of tasks waiting to be treated in the queue.
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The �rst di�erence with the Erlang model is that the number of tasks is unbounded
and it is natural to ask under what condition the number of waiting tasks will remain
bounded. In fact, if λ < µ, the Markov process is ergodic and admits for stationary
distribution:

π(x) = (1− ρ)ρx, ∀x ≥ 0,

where ρ = λ/µ is the load of the queue. The system is then said to be stable. On
the contrary, if λ > µ, the queue is transient and the number of clients tends to
in�nity almost surely when time tends to in�nity. The system is then said to be
unstable.

As in the Erlang model, we can question the validity of the Poisson and expo-
nential assumptions. We then need to specify the service policy of the queue. The
three most famous policies are: First In First Out (FIFO) where tasks are served in
their arrival order; preemptive Last In First Out (LIFO) where the last customer
in the queue interrupts the current service to be served; Processor Sharing (PS)
where the service capacity is equally shared between all the tasks present in the
queue. In the case of FIFO, as proved by Loynes in [Loy62], the notion of stability
can easily be extended to a much more general queue, the G/G/1 FIFO queue,
where inter-arrival times and service times are general stationary random variables
with respective means λ−1 and µ−1. Concerning the delay, the Laplace transform
of the waiting time at equilibrium is known for the GI/GI/1 FIFO queue and no-
tably reduces to the Pollaczek-Khinchin formula for the case of theM/GI/1 FIFO
queue. The average delay is then given by

δ =
1

µ

(
1 +

ρ

1− ρ
E(S2)

2E(S)2

)
,

where S is the service time of a task and E(S) = µ−1. We can note that this model
is sensitive to the service time distribution beyond the mean unlike the Erlang
model which is insensitive. On the contrary, the M/G/1 PS and M/G/1 LIFO
are insensitive and the mean delay is the same as in the M/M/1 case. For more
details on those queues, one can refer to [Rob03, Chapter 2, Chapter 7].

A natural extension of queues are queueing networks. In this context, tasks join
a queue when entering the network. When they leave a queue, they can leave the
system or join another queue. Eventually, they reach their destinations and leave
the network. A representative class of examples are Jackson networks. Incoming
tasks arrive in queue i according to a Poisson process of parameter νi. After leav-
ing queue i, a task joins queue j with probability pij or leaves the network with
probability 1 −

∑
j pij . In queue i, a task requires an exponential service time of

parameter µi. An example of Jackson network is represented on Figure 3.

ν µ1 µ2 µ3

Figure 3. A Jackson network of N = 3 queues.

Jackson networks are a particularly interesting example since their behavior at
equilibrium is well known. Consider the solutions of the tra�c equations, i.e. the
λi such that:

λi = νi +
∑
j

pjiλj .
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The quantity λi is the intensity of queue i arrivals. We know that the stability
condition for a M/M/1 queue is λ < µ and, similarly, for a Jackson network, the
stability condition is that λi < µi for any queue i. More surprisingly, Jackson
proved in [Jac63] that at equilibrium, queue i is independent of other queues and
behaves as an M/M/1 queue with arrival rate λi and departure rate µi and the
stationary distribution of a Jackson network is

π(x1, . . . , xL) =

L∏
i=1

(1− ρi)ρxii , with ρi =
λi
µi
.

In particular, the delay experienced by a task in queue i is, on average, 1/(µi−λi).
The behavior of those networks can then be described very precisely and for that
reason, Jackson networks (or a generalization) seem to be a good candidate to
describe packet-switching networks. In the next Section, it is explained why it is
not the case.

3.2. Packet Switching Networks and Congestion Control. In the early six-
ties, a new network design appeared. At that time, communication between com-
puters was performed through the telephone network and, according to the circuit
switching paradigm. There are several drawbacks with that principle, among which
the fact that resources must be reserved along the route during the whole communi-
cation and the fact that routing is decided in a centralized way which is not robust to
the destruction of a part of the network 1. This conducted Baran to propose a new
network paradigm in [Bar62]: packet switching. Instead of allocating resources at
the beginning of the communication, data is divided into packets which are sent
into the network. When going through switches, routers and other networks nodes,
packets are queued before being transmitted. The main advantage is that the net-
work is organized with highly distributed mechanisms and the main drawback is
that the throughput of a data transmission can vary over time according to the
network load and there is no guarantee that a packet sent into the network reaches
its destination. This is one of the issues that have been addressed by Cerf and Kahn
in [CK74] by the creation of the Transport Control Protocol (TCP) which ensures
end-to-end transmission error control. Basically, the receiver sends an acknowl-
edgement for each received packet. If after some timeout, no acknowledgement has
been received by the sender for a given packet, it is retransmitted.

If the original version of TCP seems to be su�cient to guarantee the integrity
of a transmission, it does not guarantee an e�cient use of available resources. In
fact, a phenomenon called congestion collapse has been observed in 1986 in the
Internet as described by Jacobson in [Jac88]. It appears that at certain times,
most packets sent in the network were eventually dropped before reaching their
destination resulting in a huge drop of the bandwidth and an ine�cient use of
the network resources. In order to avoid this phenomenon, Jacobson proposed the
introduction of a congestion window in [Jac88]. The aim of that congestion window
was to adapt the packet sending rate to the congestion in the network. TCP has
been very well accepted and is used for the vast majority of the transmissions in
the Internet.

The congestion control mechanism described above induces many correlations
between packets in the network. Since data �ows are cut into many packets, those
packets arrive in bursts and the congestion control mechanisms induce correlations
both in space and time: in space, since the congestion at a given bottleneck can
change the sending rates of two �ows coming from di�erent places and in time since
recovering from a congestion can be very long. These remarks are heuristic but it

1. This was a crucial issue during the Cold War and the Nuclear threat.
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has been observed by Leland et al. in [LTWW93] and by Paxson and Floyd in
[PF95] that packet tra�c on an local area network is statistically very close to a
self-similar process, excluding Poisson and Markov modeling of packets dynamics.

As a consequence, modeling packet-switching networks with queues is extremely
intricate. For instance, Jackson networks, introduced above, or Kelly networks (see
[Kel79]) seem perfectly adapted for modeling packet switching networks mainly
due to their product-form stationary distribution. However, the Poisson arrivals
assumption is crucial. Without it, those networks are very di�cult to analyze.

3.3. Flow-Level Modeling. Looking at packet-switching networks at packet level
may not be the right point of view for evaluating their performance. We saw in the
previous section that mathematical models correctly describing packet tra�c are
very complex and despite extensive research in this area, there is no simple dimen-
sioning rule like the Erlang formula for packet-switching networks, from the packet
point of view. Fundamentally, we could think again of good performance metrics.
Are packet delays the best metrics? Internet users are oblivious of packets and
what they typically see is the average throughput obtained during a data transfer.
If we want to evaluate the performance of a network correctly, we need to model
networks at the �ow level as proposed by Massoulié and Roberts in [MR00].

A �ow in the Internet is a loosely de�ned object representing a stream of data
with common characteristics (sender and receiver IP address, port number . . . ).
Here, we use that term in order to represent the transfer of a particular document.
The important property is that the �ow is a continuous stream of packets using the
same path in a network. It is then characterized by its starting time and its size.

We then represent network dynamics with a �uid model in order to get a more
tractable mathematical model; �ows become �uids of data instead of streams of
packets. Thanks to this mechanism, we remove the granularity of �ows. Here we
assume that the sending rate of all �ows is regulated by a congestion algorithm like
TCP. In this model, it is assumed that TCP reacts instantly to any change in the
network state and provides a fair bandwidth sharing between users. If the Poisson
assumption is not reasonable at the packet level, it is more acceptable at the �ow
level (see [BBP+01] for instance).

We �rst illustrate this modeling principle with a single link of capacity C as
illustrated on Figure 4. Flows are assumed to arrive according to a Poisson process
of intensity λ. Each �ow has an exponential size of mean σ and a maximum sending
rate, which is typically the access rate of users, denoted by a. For simplicity, we
assume that there exists an integer m such that C = ma. The congestion algorithm
is assumed to achieve a perfectly fair sharing between �ows so that the sending rate
of a �ow is a if x ≤ m and C/x otherwise, where x is the number of active �ows.

C

a

Figure 4. Users with peak rate a sharing a link of capacity C.

This model corresponds to anM/M/m queue with arrival rate λ and departure
rate µ = a/σ. Denoting by α = λ/µ the tra�c intensity, we can prove that the
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system is stable if α < m, i.e. λσ < C which is again the natural condition. If this
condition is satis�ed, the stationary distribution is given by:

π(x) = π(0)
αx

x!
, ∀x ≤ m,

π(x) = π(m)ρx−m, ∀x > m,

with ρ = λσ/C < 1 denoting the system load. With this notation, we are able to
derive di�erent metrics such as the congestion rate G which is the probability to
have more than m active �ows at a given time:

G =
ρE(α,m)

1− ρ+ ρE(α,m)
,

where E(α,m) is the Erlang formula de�ned by equation (2.1). The mean through-
put for an active �ow is then given by:

γ =
ρ(1− ρ)m

G+ ρ(1− ρ)m
.

The mean throughput is plotted for several values of m in Figure 5. We can
remark that the smaller a is compared to C, the closer to the access rate the mean
throughput is. This fact will be discussed in more detail in Chapter II and has been
studied by Reed and Zwart in [RZ10].
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Figure 5. Mean throughput with respect to load (m =
1, 10, 100, 500, from bottom to top).

We now consider a network with L links and K classes of �ows. Link l has a
capacity Cl. A �ow of class k has a �xed route Rk which is a sequence of links,
a size which is an exponential random variable of mean σk, and a maximum rate
ak. Concerning the bandwidth sharing, the situation is not as straightforward as
in the case of a single link. Flows of class k arrive according to a Poisson process
of intensity λk. In [Kel99], Kelly gives heuristic arguments to justify that TCP
approximately achieves proportional fairness. This means that for a given network
state (x1, . . . , xK), the throughputs of �ows (ϕ1, . . . , ϕK) are the solution of the
following optimization problem:

maximize
(ϕ1,...,ϕK)

K∑
k=1

xk log (xkϕk)

subject to
∑

k:l∈Rk

xkϕk ≤ Cl, ∀l ∈ {1, . . . , L},

ϕk ≤ ak, ∀k ∈ {1, . . . ,K}.
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A more general class of fair sharing policies, the α-fair policies, has been proposed
by Mo and Walrand in [MW00].

In this context, the natural stability condition would be∑
k:l∈Rk

λkσk < Cl, ∀l.

We can prove that if there exists l0 such that
∑
k:l0∈Rk λkσk > Cl0 then the system

is unstable, as done by Bonald et al. in [BMPV06]. This means that this natural
stability condition is in fact optimal. However, the proof that this is the actual
stability condition is not straightforward. It has been proved for α-fair policies by
Bonald and Massoulié in [BM01]. Massoulié extended this result in [Mas07]. A
similar result has been obtained by de Veciana et al. in [dVKL01]. Performance
of Proportional Fairness is evoked in Section 6.2.

The underlying assumption of all these works is that most of the tra�c is
regulated thanks to congestion control mechanisms. However, there is no clear
reason why users should still enforce such a mechanism in the future. In [BFP09],
a model of bandwidth sharing network where users do not use congestion control
anymore is introduced. This model is studied in Chapter II.

So far, we have considered models of wired networks. In the next section, we
explain why �ow-level modeling is also useful in wireless networks.

4. Wireless Networks Modeling

4.1. Wireless Access Algorithms. In the previous section, packet-switching
networks are presented from a macroscopic point of view. In particular, important
design mechanisms occurring at link level are completely neglected. However, this
is a domain where network performance analysis and queueing theory have proved
to be very useful.

The problem is the following: there is a single communication channel which is
shared between several users. Each of them generates messages to be transmitted on
the channel to another user. If two users transmit messages at the same time, there
is a collision and both transmissions are lost. Historically, this situation corresponds
to a local area network where all the local stations are connected to a unique wired
line linked to the Internet. Thanks to the development of some technologies and,
in particular, switches, this design issue has disappeared since there is virtually no
collision anymore. However, an increasing fraction of communications take place
through wireless links. In that case, the communication channel is a frequency
bandwidth and collisions should be considered.

There are some important constraints for the design of a wireless access algo-
rithm. First, the number of users present in the network is unknown; it can vary
over time and for some frequencies, there is no way to control it since anybody is
allowed to use devices as they wish. As a consequence, it is impossible to de�ne a
centralized authority regulating access to the channel due to the fully distributed
nature of the network; moreover the access control mechanism also has to be com-
pletely distributed. Secondly, in most cases, it is impossible to emit and listen on
the channel at the same time since any communication of other users would be
covered by one's own emitting. Thirdly, each user has only a partial vision of what
happens in the network. In particular, without speci�c mechanism, she cannot even
know if her own message has been received. Those di�erent points make the design
of an algorithm quite challenging.

4.2. A First Example: Aloha. The �rst algorithm which was designed for wire-
less communication is Aloha introduced by Abramson in [Amb70]. The motivation
was to connect a central time-sharing computer based in Oahu, the main island of
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Hawaii to users in other islands of the archipelago. In the initial design, two distinct
frequencies were used. The �rst one was dedicated to the main computer for trans-
mitting packets to users and the second frequency was shared by users for sending
packets to the main computer. Since there was the possibility of a collision, the
following mechanism was used. Each user transmits any incoming packet. If a colli-
sion is detected, the packet is retransmitted after a random time. The randomness
allows to schedule the transmissions. Without it, the system would be blocked as
soon as two users have packets to send. A �rst improvement of this algorithm has
been proposed: it consists in dividing time in slots and allowing each user to start
a transmission only at the beginning of a slot. The algorithm is then the following:
at the beginning of each slot, if a user has a packet to send, she transmits it with
probability p. This algorithm is called slotted-Aloha.

In that context, many analyses have been performed to evaluate the perfor-
mance of this system. Assume that there are N users and each user i receives
packets according to some stationary process of mean λi packets per time unit and
the transmission probability of user i is pi. When all users have a packet to send,
the probability that user i successfully transmits her packet is

pi
∏
j 6=i

(1− pj).

One can think that the stability condition here is

λi
pi
∏
j 6=i(1− pj)

< 1.

This is true but only in a very speci�c case where the left member of the previous
inequality does not depend on i as proved by Bonald et al. in [BBHP04]. In the
general case, the stability region is known only for 2 users and it has been proved
that, for N ≥ 3, the stability condition depends not only on the intensity of the
arrival rates but also on other statistical parameters as proved by Szpankowski
in [Szp93]. Recently, Bordenave et al. proposed in [BMP08] a very accurate
approximation of the stability region using mean �eld techniques.

Today, Aloha is still used in some speci�c situations such as a GSM cell where
it regulates access to the control channel. However, the basic principles are still
valid in the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
which is used in the 802.11 standard for instance. The basic principle of CSMA
is the following. When a user wants to send a packet, she listens to the channel.
When the channel is free, she waits for a random period of time, the back-o� period,
during which she listens to the channel. If it is still free after the back-o� period,
she transmits its packet. The performance of this algorithm is analyzed in some
speci�c cases in Chapter III.

4.3. Max-Weight Scheduling. In the previous section, we considered a very
speci�c network where all users are connected to a central node. In practice, the
topology of networks is more and more diverse and there is a need for a more
general model of wireless networks. In particular, we need to take into account the
topology induced by the positions of users. Indeed, if two users are close then they
will interfere with each other. On the contrary, if they are distant, they can use
the communication channel at the same time.

Here is the resulting model. The network is a set of wireless links, consisting
in a transmitter-receiver pair. All these links use the same radio channel and,
depending on the distance between users and radio conditions, they can use the
channel at the same time without interfering with each other or not. We then
de�ne an interference graph (V,E) in the following way. Each vertex of this graph
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is a link of the network and two links can transmit at the same time on the radio
channel if and only if they are not connected in the interference graph. Each edge
in the graph then represents a con�ict. An example of an interference graph is
given in Figure 6; links 1 and 4 are distant enough to transmit at the same time
but link 3 is very close to all others links and cannot transmit simultaneously with
any of them.

1

2

3

4

Figure 6. An ad-hoc wireless network with 4 links and its inter-
ference graph.

Packets are assumed to arrive according to Poisson processes with intensity λi
for link i. The size of each packet is an exponential random variable of mean σi.
The speed of transmission of each packet is assumed unitarian and we de�ne the
tra�c intensity for link i as ρi = λiσi. As previously, we are interested in charac-
terizing the stability region for a given algorithm. However, in order to evaluate
the performance of these algorithms, it might be interesting to characterize the
capacity region; the set of tra�c intensities for which there exists an algorithm sta-
bilizing the whole system. This capacity region has been characterized by Tassiulas
and Ephremides in [TE92] as the convex hull of all probability distributions on
feasible schedules where a feasible schedule is a set of active links without con�ict.
Tassiulas and Ephremides also provide an algorithm which stabilizes the system
whenever possible: the Max-weight scheduling algorithm. Each time a packet is
transmitted or arrives, a new schedule is chosen such that it maximizes the sum
of the lengths of the queues of the active links. This algorithm is remarkable since
it is the �rst throughput-optimal algorithm in this context. However, it su�ers a
main drawback: it is a centralized algorithm and �nding a max-weight schedule
is NP-hard for general interference graphs (see the book of Garey and Johnson
[GJ90]).

Since then, several algorithms have been proposed to approximate Max-Weight
Scheduling. In the context of switches, McKeown proposed in [MVW93] to use
the Maximal Queue Scheduling algorithm. The principle is simple: each time a
packet is transmitted or arrives, a new schedule is chosen in the following way.
The link with the maximum number of packets in the queue is activated. All
con�icting links are inactivated. We proceed recursively on the remaining links
until all links are activated or inactivated. This algorithm performs quite well in
the context of switches but, for wireless networks, it can result in an ine�cient
use of the available bandwidth as proved by Dimakis and Walrand in [DW06].
Furthermore this algorithm is not distributed. There exists a distributed algorithm
approximately achieving Maximal Queue Scheduling, such as the one proposed
by Alon et al. in [Alo86]. However, this algorithm is suboptimal as proved by
Chaporkar et al. in [CKLS08].

More recently, some classes of optimal distributed algorithms have emerged.
Those algorithms are based on CMSA/CA scheme described in the previous section.
In [JW08], Jiang and Walrand use a learning algorithm to adapt the back-o�
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parameter to the network conditions. This algorithm is distributed but requires a
global starting time for learning the network conditions and is not able to adapt
to arrival and departure of new nodes. Furthermore, the convergence rate of the
algorithm is slow resulting in poor short-term performance. In [SS11], Shah and
Shin propose a di�erent approach by adapting the back-o� rate of the link to its
queue size; the more packets in the queue, the more aggressive the link to access
the channel. The authors have proved that the algorithm is optimal assuming that
the back-o� rate depends on the queue size in a logarithmic way. Bouman et al.
show in [BBLP11] that this assumption results in poor throughput performance
for some topologies.

4.4. Flow-Level Modeling. All algorithms that are presented in the previous
section are packet-based algorithms. Basically, the scheduling decisions are taken
according to the arrival rate of packets or the number of packets waiting in the
queue. Most of the proofs use strong assumptions on the tra�c statistics of the
arrival processes of packets. However the remarks made in Section 3.3 are still
valid. Typically, packet arrivals are very bursty and state-dependent.

In [vdVBS09], Van de Ven et al. show that Max-Weight Scheduling can be
ine�cient if the packet arrivals are very bursty and if the �ow dynamics are taken
into account. This justi�es that, again, algorithms need to be designed at �ow
level by taking into account the �ow dynamics. In Chapter III, a new distributed
algorithm is proposed and we prove that this algorithm is throughput-optimal under
some mathematical assumptions.

5. Distributed Storage with Failures

New usages of the Internet have emerged and with them new complex systems
with a very large scale. One can think of peer-to-peer networks as the �rst example.
Here the aim is not to connect two machines but to get a speci�c �le whoever the
person transmitting the �le. Peer-to-peer mechanism enjoys a huge success and
represents a large fraction of the o�ered tra�c in the Internet today, even if this
fraction is decreasing over time due to the success of video streaming. The aim of
peer-to-peer networks is to exchange �les between users without requiring a large
�xed infrastructure composed of servers. More recently, people proposed to build
large and completely distributed systems such as distributed hash tables. The basic
idea is to store data in nodes which are located anywhere in the network and form
a logical ring independent of the Internet topology. For each �le, an identi�er is
computed thanks to a hash function and the �le is stored in the node which is the
closest to its identi�er on the logical ring. In order to ensure the resilience of data,
the main server duplicates this �le into its neighbors on the logical ring. All the
di�culty comes from the fact that the topology is evolving rapidly due to node
failures, arrivals and departures. Evaluating the durability of a �le is then a very
di�cult task. A �rst approach for estimating this durability has been proposed by
Picconi et al. in [PBS07a] and [PBS07b].

As mentioned above, video streaming demand has been increasing signi�cantly
for the last few years. Similarly the needs for computing capacities has drastically
increased with the development of cloud computing services. For all these reasons,
data centers have grown over the last years on a very large scale. For instance,
Akamai Technologies runs more than 105,000 servers worldwide in March 2012
and Google is estimated to run more than 900,000 servers even if those �gures
have not been publicly con�rmed by the company 2. As data centers scale up, the
total storage capacity increases but it also makes failures more common. For those

2. Source: http://www.datacenterknowledge.com/
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systems, failures arise on a daily basis and there is a real need for protection against
data loss. Even if there already exist back-up solutions such as RAID [PGK88],
it appears that those solutions are not adapted. For instance, rebuilding a 500GB
RAID while still in service can take more than one day and there is typically a
chance of a second failure of 0.1% in the meantime. Even if mechanisms have
already been proposed such as [XMS+03] by Xin et al., there is today, to the best
of our knowledge, no real analysis of very large storage systems with failures. There
is a large literature on queues with failures but each time, a small number of queues
are considered. We can notably evoke the work of Gallet et al. [GYJ+10] which
considers a statistical model to analyze large failure traces.

Those two situations led us to study those large scale storage systems with
failure. In Chapter V, we consider a single �le and evaluate its durability with a very
simple model: the Erlang model. We are then able to derive precise asymptotics
when the number of copies in the system becomes very high. However, this model
is very simple and does not take into account the fact that many �les are stored by
the same system. In Chapter IV, we introduce a model where two copies of each
�le are stored. It is assumed that there is a centralized back-up mechanism, we
are then able to derive precise asymptotics of the system evolution with a scaling
analysis. In an on-going work, we relax the assumption of the centralized back-up
mechanism and we consider a fully distributed system. Asymptotics of the behavior
of the system are derived thanks to a mean-�eld analysis.

6. Mathematical Tools

6.1. Markov Processes. In 1906, Andrei Markov introduced the chains named
after him in order to produce a counter-example to Nekrasov who wanted to prove
that the independence of random variables is necessary for the weak law of large
numbers. The Markov chains appeared then in the middle of a pseudo-scienti�c and
philosophical argument and for a purely mathematical purpose 3. Today, Markov
chains and processes are one of the very basic tools of mathematical modeling and
a large amount of theory has been developed on the subject.

In the present work, most models are in fact (multi-dimensional) queues. In
that particular context, in order to obtain Markov processes, two assumptions are
necessary. The �rst one is that tasks (or clients, �ows. . . ) arrive according to Pois-
son processes. The second is that service times are exponential random variables.

On the one hand, Poisson arrivals is not an unrealistic assumption in many
cases. For instance, in the case of telephone networks, each user behaves inde-
pendently of the others and typically has a small activity. In the limit, when the
number of users tends to in�nity and the activity tends to 0, at constant load, the
obtained arrival process is a Poisson process. This is why the Engset model tends
to the Erlang model and the second one provides a very good approximation of the
�rst one. In practice, this is true even for a relatively small number of users as illus-
trated by Figure 2. However, we mentioned that there are domains where Poisson
arrivals are not realistic such as packet arrivals in packet-switching networks.

On the other hand, representing service times by an exponential random vari-
able is something much more di�cult to justify. In the example of telephone calls,
Erlang and Engset already observed that this assumption is not realistic. In fact,
the duration of a call is better represented by a power-law distribution which is
very di�erent from the exponential distribution. However, as explained above, the
results obtained by Engset and Erlang are insensitive to the call duration distribu-
tion and are still valid for general service times. This is a very speci�c situation
which arises in a signi�cant number of cases: the stationary distribution of the

3. For more details, see the article of Seneta [Sen96]



6. MATHEMATICAL TOOLS 15

process does not depend on detailed statistics but only on the mean. Many works
have been carried on that subject. One can have a look at the work by Burman
[Bur81] and Bonald [Bon07]. Of course, all Markov processes are not insensitive.
In that case, one can consider looking at more general processes. However, it seems
natural to look �rst at Markov processes to dissociate di�culties due to the original
problem from those due to generalization.

6.2. Analysis at Equilibrium. In most cases, Markov processes and, more gen-
erally, stochastic processes are studied at equilibrium. Basically, a Markov process
is stationary if its marginal distribution does not vary over time. The �rst question
is then to determine in which cases this situation is possible. For instance, it is
indicated in 3.1 that the M/M/1 queue is stable and admits a stationary distribu-
tion if and only if λ < µ. In full generality, the stability of a Markov process can
be obtained by proving that the general balance equations of the process admit a
summable solution. However, despite speci�c classes of processes described below,
this is not tractable in most cases. One of the most popular tools to prove the sta-
bility of a Markov process is Foster's criterion. Basically, it consists in proving that
when the process is outside a compact set, there is a negative drift driving back the
process in the compact set. Despite being quite powerful, this criterion requires to
�nd a Lyapunov function which can be a di�cult task. For more details on Foster's
criterion, one can read the book of Brémaud [Bré01]. A proof of stability using
Foster's criterion is detailed in Chapter III.

In fact, there is a large class of processes for which the global balance equations
can be replaced by a much simpler system of equations; those are the reversible
processes. Roughly speaking, a Markov process (X(t)) is said to be reversible if the
process in reverse time (X(T − t)) has the same distribution as (X(t)) on [0, T ] for
T > 0. In this case, we can prove that any stationary measure of the process must
satisfy the local balance equations which state that the frequency of jumps from
state i to state j is equal to the frequency of jumps from state j to state i. This is
stronger than the global balance equations which simply state that the frequency of
jumps into state i are equal to the frequency of jumps from state i. In particular, if
the process is reversible, any stationary measure admits a closed form expression.
Proving the stability is then reduced to proving the summability of this stationary
measure. For more information on reversible networks, one can refer to the book of
Kelly [Kel79]. Examples of reversible process are studied in Chapters III and V.

Even when the stability has been established, for most Markov processes, the
stationary distribution does not admit a closed form expression and this limits any
analysis that can be performed on the stationary regime. For instance, this is the
case for bandwidth sharing networks introduced in Section 3.3. The fact that the
stability condition of this model is the optimal one ensures that network resources
are used in an e�cient way. However, it does not necessarily imply a good quality
of service, which typically is the mean throughput, depending on the stationary
distribution. Bonald and Proutière then proposed in [BA03] to approach Propor-
tional fairness and other usual bandwidth allocations by an allocation, Balanced
Fairness, such that the underlying Markov process is reversible. It has been estab-
lished that Balanced Fairness is a good approximation of Proportional Fairness. A
survey on Balanced Fairness and its relation to Proportional fairness can be found
in [BMPV06]. The approximation of Proportional Fairness by Balanced Fairness
is discussed by Massoulié in [Mas07].

Reversible networks are not the only class of stochastic networks for which
the stationary distribution is known. The Jackson networks introduced in Section
3.1 are generally not reversible. For instance, the network represented on Figure
3 is not reversible since there are customers migrating from queue 2 to queue 3



16 I. INTRODUCTION

and not the contrary. However, the stationary distribution of Jackson networks is
known and admits a simple product-form expression. There is in fact a large class
of stochastic networks called quasi-reversible networks which also admit a product-
form stationary distribution. An introduction on that subject can be found in the
book of Serfozo [Ser99].

6.3. Martingale Methods. One of the �rst natural questions that arise when
studying a Markov process is the evaluation of hitting times. Typically, starting
from a point x, one wants to know with which probability the process reaches
y and what is the probability distribution of Ty, the hitting time of y by the
considered process. If the process is recurrent, the probability of hitting y starting
from x is always 1 but we do not know anything about the distribution of Ty.
Di�erent methods have been developed to evaluate hitting times. Most of them rely
on calculating the Laplace transform of hitting times. In the case of birth-death
processes, Karlin and McGregor develop a method based on orthogonal polynomials
in [KM57]. We present here a method to compute the Laplace transform based
on a martingale method used by Kennedy in [Ken76]. An introduction to this
method on di�erent examples can be found in [Rob03].

For some processes, there exists a family of non-negative martingales which
allow to get some useful information about hitting times. We illustrate this on
a simple M/M/1 queue where clients arrive according to a Poisson process with
parameter λ and each of them requires an exponential service time with parameter
µ. If we consider the process (L(t)) describing the number of clients in the queue,
it is a Markov process on N with transition rates

q(x, x+ 1) = λ, q(x, x− 1) = µ1{x>0}.

The simplest example of a hitting time here is the time at which L(t) hits 0
starting from L(0) = N . In this case, the discontinuity of the in�nitesimal generator
in 0 does not play a role and we can simply consider the biased random walk (Z(t))
with transition rates q(x, x + 1) = λ and q(x, x − 1) = µ. We denote by T0 the
hitting time of 0 by (Z(t)). Using a family of non-negative martingales, similar to
the exponential martingale for the Brownian motion, we are able to compute the
Laplace transform of T0. By analyzing it, we can obtain easily that T0 is �nite
with probability (µ/λ)N when λ > µ. In order to obtain the asymptotic behavior
of the hitting times when λ < µ and N tends to in�nity, we just have to analyze
the convergence of the Laplace transform. In particular, there is a central limit
theorem for T0 when N tends to in�nity:

T0 −N/(µ− λ)√
N(µ+ λ)/(µ− λ)3

⇒ N (0, 1).

We now consider the hitting time of N when L(0) = N . In that case, it is not
possible to neglect the boundary e�ect in 0. However, it is possible to construct a
martingale for (L(t)) by choosing a linear combination of two martingales of (Z(t))
which preserves the martingale property in 0. We are then able to derive an explicit
expression for the Laplace transform of TN . From this expression, we can derive
the asymptotic distribution of (λ/µ)NTN when N tends to in�nity and λ < µ, this
is an exponential random variable with parameter (µ− λ)2/µ.

These methods for computing the Laplace transform and derive asymptotics of
hitting times distributions are developed in Chapter V for the classical Ehrenfest
model and the Engset model which has already been introduced in Section 2.

6.4. Scaling Methods. The method introduced in the previous section is quite
powerful but requires to use an ad-hoc martingale family that can be di�cult to
�nd. Scaling techniques then provide a useful toolbox to get a �rst-order description
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of such systems. During this PhD, di�erent kinds of scalings in time and space have
been considered.

The basic idea of the scaling in time and space is the following. We consider a
sequence of Markov processes (XN (t)) and we choose appropriate sequences (ΨN )
and (ΦN ) in order to analyze the evolution of the sample path of(

XN (ΨN (t))

ΦN

)
when the parameter N tends to in�nity. The sequence ΦN de�nes the macroscopic
scale of the process (XN (ΨN (t))), that is to say the area of the state space where
the process lives. The time scale t 7→ ΨN (t) allows to focus on some speci�c part of
the sample paths. As illustrated by Chapter IV, there could be several time scales
of interest for the same sequence of processes (XN (t)). We introduced in Sections
6.4.1 and 6.4.2 two representative examples of techniques used in this thesis.

6.4.1. Fluid Limits and the M/M/1 Queue. The goal here is to obtain a �rst
order description of the process (L(t)). In particular, one would like to understand
what is the evolution of the process when it starts from a very large initial state
L(0) = N >> 1. Since we increase the initial state, it is quite natural to renormalize
the process with ΦN = N . Additionally, we must increase the time window in order
to correctly evaluate the variations of the process. Since the transition rates are
bounded, it is necessary to use the time scale t 7→ Nt to see variations of order N .

If we denote by T0 the �rst time where (L(t)) hits 0, it is clear from the
transition rates that (L(t)) can be expressed as the di�erence between two Poisson
processes of respective rates λ and µ:

L(t) = L(0) +Nλ(t)−Nµ(t).

The strong law of large numbers gives that Nλ(Nt)/N tends to λt when n tends to
in�nity. Furthermore, we can prove that if L(0) = N and λ < µ, T0/n converges in
distribution to the constant 1/(λ−µ). On the contrary, we can prove that, if λ > µ,
T0/N is in�nite with high probability for N su�ciently large. All this suggests that
the right time scale is then t 7→ Nt and, indeed, we de�ne the following sequence
of processes:

L̄N (t) =
L(Nt)

N
, with L(0) = N,

and we can prove that L̄N (t) converges in distribution to the deterministic process
t 7→ max(0, 1 + (λ − µ)t)). Almost all ingredients of the proof have been given.
The only missing part is for λ < µ and t > T0/N , we have to prove that L̄N (t)
converges to 0. This comes from the fact that the time for an ergodic M/M/1
queue to reach the level εN is of order (µ/λ)εN and is typically much larger than
Nt. For a rigorous presentation of this convergence, one can refer to the book of
Robert [Rob03].

In fact, we can get more insight in the initial process by looking at the di�usion
around the limiting process of (LN (t)). Interestingly, the variations are of order
O(
√
N) as long as the queue has not reached 0 and are of order O(1) after. This

fact is illustrated by Figure 7.
As explained in Section 6.2, proving the stability of a Markov process can be

di�cult and Foster's criterion can be very tricky to use. Therefore, we need a
more qualitative approach, and this is what �uid limits have been designed for. In
particular, one can remark that this scaling is very speci�c in the sense that the
in�nitesimal generator of the original process is left untouched. One of the �rst
attempts to use �uid limits for establishing stability has been made by Malyshev in
[Mal93]. In this article, he studied random walks on NK where, in fact, transitions
depend only on the number of empty queues. In particular, transition rates are
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Figure 7. The dynamics of the �uid limit of an M/M/1 queue.

bounded. One can note that Jackson networks introduced above are an example
of such a process. Malyshev established here relations between a random walk and
some dynamical system which is a �uid limit of the considered process but the
convergence is not established and no formal de�nition of a �uid limit is given.

This de�nition of �uid limits and their link with the stability of stochastic
processes are introduced by Rybko and Stolyar in [RS92] where they proved the
stability of FIFO queues under optimal stability conditions and studied some in-
teresting example of a network with a priority mechanism. There are two links and
two classes. Customers of classes 1 and 2 arrive according to independent Poisson
processes of respective intensities λ1 and λ2. Customers of class 1 are served by
link 1 at rate µ11 and move to link 2 where they are served at rate µ12. Customers
of class 2 are served by link 2 at rate µ22 and then move to link 1 where there are
served at rate µ21. Link 1 gives priority to customers of class 2 and link 2 gives
priority to customers of class 1. The principle of this network is summarized on
Figure 8.

µ11

µ21

λ1 µ12

µ22 λ2

Figure 8. The Rybko-Stolyar network

For such a network, the optimal stability condition is

λ1

µ11
+

λ2

µ21
< 1,

λ1

µ11
+

λ2

µ21
< 1

However Rybko and Stolyar have proved that there is an additional cross condition:

λ1

µ12
+

λ1

µ21
< 1
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Notably, this is the �rst example of a random queueing network which is unstable
although the optimal stability conditions are satis�ed. The proof of instability is
not strictly based on �uid limits but they used them to get an intuition of the
behavior of the system; the proof is quite close to �uid limits methods. In fact,
�uid limits describe very well the oscillations of the system: incoming customers of
class 1 are queued while customers of class 2 are served and leave the system and
vice-versa. This dynamics of the �uid limit is represented on Figure 9 in the case
where µ11 = µ22 = +∞. In that case, the system can be completely described by
the number of customers in each class L1(t) and L2(t) and the active server. One
can note that a very similar example has been proposed in a deterministic setting
by Lu and Kumar in [LK91].

y = λ2

µ12−λ1
x

L2(t)

x λ1

µ21−λ2
y L1(t)

Figure 9. The dynamics of a �uid limit of a transient Rybko-
Stolyar network

In [Dai95], Dai studied a large class of queueing networks. His aim was to
propose a generic method for studying the stability of Markov processes using �uid
limits. A criterion of transience has been proposed by Meyn in [Mey95]. A good
introduction on �uid limits and a generalization of the criterion of stability can be
found in [Rob03]. Many examples of �uid limits are studied in [Bra08]. Fluid
limits are used to prove the stability of some networks in Chapters II and III.

6.4.2. Kelly's Scaling and the M/M/∞ Queue. All stochastic processes con-
sidered in the previous section have bounded transition rates. For all of them, the
�uid limit o�ers a good �rst-order description of their behavior and give a quali-
tative method to establish their stability. Here, we want to study a process with
unbounded transition rates: an M/M/∞ queue. Clients are assumed to arrive ac-
cording to a Poisson process and since there is an in�nity of servers, each client is
served at rate µ. The process (L(t)), describing the number of clients in the queue,
is a Markov process on N with transition rates

q(x, x+ 1) = λ, q(x, x− 1) = µx.

If we �x a maximum number C of clients in the system and if any incoming customer
is blocked when the queue is full, this is the Erlang model introduced in Section 2.

If we compute the �uid limit of this queue, it results in a degenerated process
whose initial value is 1 and which is null for any t > 0. This fact can be explained
simply: if we consider a very high initial number of clients in the queue such that
L(t) = N , the departure rate of the queue is µN which is much higher than the
arrival rate λ. In the case of theM/M/1 queue, departure rates and arrival rates are
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of the same order whatever the initial state. In order to compensate the departure
rate, it is natural to scale the arrival rate by a factor N . This leads to Kelly's scaling
which has been introduced in [Kel86] for loss networks. We de�ne a sequence of
processes (LN (t)) such that LN (0) = N , whose transition rates are

q(x, x+ 1) = λN, q(x, x− 1) = µx.

We then renormalize the process by N and we can prove that the sequence of
processes (LN (t)/N) converges in distribution to a deterministic process (x(t)) such
that

ẋ(t) = λ− µx(t).

One can note that there is no need to scale time here since the number of transitions
per time unit is already of order N . A major di�erence with the M/M/1 is that
there is no discontinuity. However, if we consider the Erlang model such that
(LN (t)) has the following transition rates:

q(x, x+ 1) = λN1{x<CN}, q(x, x− 1) = µx,

for some CN ∈ N, there is a discontinuity in CN . Assuming that CN ≈ ηN and
LN (0) = 0, one can prove that the sequence of processes (LN (t)/N) converges in
distribution to (x(t)) such that

x(t) = min
(
ρ(1− e−µt), η

)
.

As in the case of the M/M/1, one can prove that, while the boundary has not
been reached, there is a di�usion of order O(

√
N) around the limit. If η < ρ, then

the boundary is reached after a �nite time and the variations are then of order
O(1). Kelly's scaling has been introduced in the context of loss networks but arises
naturally when the transition rates depend linearly on the state of the stochastic
process. Examples coming from population dynamics and chemistry can be found
in [EK86]. A scaling which can be seen as a variation of the Kelly's scaling is
introduced in Chapter II.

6.4.3. Di�erent Time Scales. As explained above, there can be several time
scales of interest of the same process. For instance, consider again the M/M/1
queue with arrival rate λ and departure rate µ. We have seen that the �uid limit
with time scale t 7→ Nt allows to describe the �rst-order dynamics of the system.
From this �uid limit, we deduce that the process is stable if λ < µ and it increases
linearly to in�nity when λ > µ.

In the case where λ = µ, the �uid limit of the M/M/1 queue is the constant
equal to 1 and it does not give much insights in the behavior of the system. Fur-
thermore, since µ is the limit of stability, one could be very interested in describing
the behavior of the system when approaching this limit. This is the Heavy-tra�c
approximation which has been introduced by Kingman in [Kin62]. The principle
is the following. We consider a sequence of M/M/1 queues (LN (t)) with arrival
rates λN = µ− α/N and departure rate µ and such that LN (0) = N . On the time
scale t 7→ Nt, the sequence of processes (LN (Nt)/N) is almost their �uid limit and
admits the same limiting process. However, on the time scale N 7→ N2t, the process
(LN (Nt)/N) converges in distribution to a re�ected Brownian motion. The Heavy-
tra�c approximation has been widely studied in much more general contexts. For
instance, for multi-class networks, one could refer to the paper of William [Wil98],
for the M/G/1 PS queue, one could refer to the paper by Gromoll [Gro04] and
the recent paper by Lambert et al [LSZ11].

Similarly, in Chapter IV, we study a stochastic network with failures where
several scaling methods with di�erent time scales are studied.
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6.4.4. Coexistence of Di�erent Time Scales: Stochastic Averaging Principle.
For some scaling methods, it can happen that there is a coexistence of di�erent time
scales. There are two components evolving with di�erent speeds. We present here a
very simple example inspired by Hunt and Kurtz [HK94] where this phenomenon
arises. We consider the Erlang model with two classes of clients and N circuits.
The system is described by the stochastic process (L1,N (t), L2,N (t)) with transition
rates:

q(x, x+ ei) = λiN1{x1+x2<N}, q(x, x− ei) = µixi,

for i = 1, 2 where x = (x1, x2), e1 = (1, 0) and e2 = (0, 1). We also assume that
Li,N (0)/N converges to xi(0) for i = 1, 2 such that λ1 + λ2 > µ1x1(0) + µ2x2(0)
and x1(0) + x2(0) = 1. We can prove that the sequence of stochastic processes
(L1,N (t), L2,N (t)) converges to a process (x1(t), x2(t)) and we want to understand
its dynamics.

As long as λ1 + λ2 > µ1x1(t) + µ2x2(t), the total arrival rate is bigger than
the total departure rate and the system is saturated. In order to understand the
global dynamics, we have to look at the evolution of the number of empty circuits
since any incoming client is accepted if and only if there is an empty slot. We then
de�ne ZN,t(s) = N − (L1,N (t + s) + L2,N (t + s)). In fact, the transition rates of
(ZN,t(s)) are of order N and this process evolves on the time scale s 7→ Ns. We can
easily prove that the sequence (ZN,t(s/N)) converges in distribution to the process
(Zt(s)), an M/M/1 queue with arrival rate µ1x1(t) + µ2x2(t) and departure rate
λ1 + λ2. In particular, at equilibrium, the probability that there is an empty slot
is given by p(t) = (µ1x1(0) + µ2x2(0))/(λ1 + λ2).

Since (Z(t)) evolves on the time scale t 7→ Nt and the processes (x1(t), x2(t))
evolve on the time scale t 7→ t, they �see� (Zt(s)) at equilibrium. In particular, their
respective arrival rates are λ1p(t) and λ2p(t). We deduce that (x1(t)) and (x2(t))
satisfy the following ordinary di�erential equations:

ẋ1(t) =
λ1

λ1 + λ2
(µ1x1(t) + µ2x2(t))− µ1x1(t),

ẋ2(t) =
λ2

λ1 + λ2
(µ1x1(t) + µ2x2(t))− µ2x1(t),

The interaction between the �slow� process and the �fast� process is then clear.
The transition rates of (Zt(s)) are determined by states x1(t) and x2(t). On the
contrary, the di�erential equations of (x1(t)) and (x2(t)) are determined by the
equilibrium of the processes (Zt(s)).

In fact, the previous equations are valid as long as µ1x1(t) +µ2x2(t) < λ1 +λ2.
In particular, if λ1/µ1 + λ2/µ2 < 1, there exists a time T > 0 such that µ1x1(T ) +
µ2x2(T ) = λ1 + λ2. For t ≥ T , the processes (x1(t), x2(t)) satisfy the equations:

ẋ1(t) = λ1 − µ1x1(t),

ẋ2(t) = λ2 − µ2x1(t).

In this case, there is no stochastic averaging anymore. This is illustrated by Figure
10. One can note that all these equations could have been obtained very easily with
the Skorokhod problem described below but this method gives much less intuition.

This phenomenon of stochastic averaging has been known for a long time in
a deterministic framework (see Guckenheimer and Holmes [GH90]). In statistical
mechanics, it has been introduced by Bogolyubov in [Bog61]. Later, it has been
studied in the context of stochastic calculus by Khasminskii in [Kha68] His results
have been extended by Papanicolaou et al. [PSV77] and Freidlin and Wentzell
[FW98]. More recently, the phenomenon of stochastic averaging has been observed
in the context of loss networks by Hunt and Kurtz [HK94]. In Chapter II, we
exhibit a phenomenon of stochastic averaging in �uid limits. The proof is based on
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Figure 10. Stochastic averaging in the Kelly's scaling.

a martingale technique presented by Kurtz in [Kur92] but which is also present in
the work of Papanicolaou et al. [PSV77]. Similarly, another stochastic averaging
phenomenon is introduced in Chapter IV with a proof based on the same martingale
technique.

6.4.5. Skorokhod Problem Representation. As observed in Section 6.4.1, for the
M/M/1 queue, the di�culty of proving the convergence of the �uid limit is mainly
due to the discontinuity at 0. Before that, the process can be simply expressed as
the di�erence of two Poisson processes and the convergence follows easily. More
generally, when the in�nitesimal generator of the original process is su�ciently
regular, the limit is the solution of an ordinary di�erential equation as it is the
case for the M/M/∞ queue. In the case of the �uid limit of an M/M/1 queue,
the convergence can be proved directly but it is intricate and it uses some subtle
properties of the M/M/1 process and this can hardly be used in the case of more
complex processes with similar discontinuities. For a large class of problems, we
can then use the Skorokhod problem.

We consider here the M/M/1 queue with arrival rate λ and departure rate
µ. We can rewrite (L(t)) the process describing the number of customers in the
following way:

L(t) = L(0) +Nλ([0, t])−
∫ t

0

1{L(s−)>0}Nµ(ds),

= L(0) +Nλ([0, t])−Nµ([0, t]) +

∫ t

0

1{L(s−)=0}Nµ(ds).

De�ning Z(t) = L(0) + Nλ([0, t]) − Nµ([0, t]) and R(t) =
∫ t

0
1{L(s−)=0}Nµ(ds),

we can see that (L(t), R(t)) is completely determined by (Z(t)) and the process
(R(t)) is the pushing process which ensures that (L(t)) is non-negative. The couple
(L(t), R(t)) is called the solution of the Skorokhod problem associated to (Z(t))
which is a biased random walk.

It is straightforward that, if Z(0) = N , the sequence of processes (Z(Nt)/N)
converges in distribution to (1 + (λ− µ)t). Using the continuity of the Skorokhod
problem, this implies that the sequence (X(Nt)/N,R(Nt)/N) converges to the
solution of the Skorokhod problem associated to (1 + (λ − µ)t). This solution is
simply (t 7→ max(0, 1 + (λ − µ)t), t 7→ max(0,−1 + (µ − λ)t)) and we obtain the
�uid limit of the M/M/1 queue.
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In fact, the Skorokhod problem can be generalized to the multi-dimensional
case. For a short introduction, one can refer to the book of Robert [Rob03]. The
previous demonstration has been generalized to Jackson networks by Chen and
Mandelbaum in [CM91]. On the contrary, the demonstration presented at Section
6.4.1 would be hard to extend. There is a huge literature on Skorokhod problems
which have been widely studied. For instance, it has been extended to the case
where the constraints are a more general domain. For a review of those results, one
can refer to the article of Ramanan [Ram06] and references herein.

As pointed out by Anderson and Orey in [AO76], the Skorokhod problem is
not adapted to the case where the in�nitesimal generator depends on the state of
the stochastic process. The simplest example is the Erlang model. However, it is
possible to adapt the Skorokhod method to a slightly more general context which
applies to processes where the in�nitesimal generator depends on the state of the
stochastic process. These di�erent techniques are used and detailed in Chapter IV.

7. Presentation of Subsequent Chapters

Each chapter of this thesis corresponds to a paper or a set of papers (one of
them being under review):

Chapter II: Mathieu Feuillet. On the �ow-level stability of data networks
without congestion control: the case of linear networks and upstream trees.
Queueing Systems, Theory and Applications, 70:105�143, 2012

Chapter III: T. Bonald and M. Feuillet. On the stability of �ow-aware
CSMA. Perform. Eval., 67:1219�1229, November 2010
T. Bonald and M. Feuillet. On �ow-aware CSMA in multi-channel wireless
networks. In CISS, 2011
T. Bonald and M. Feuillet. Performance of CSMA in multi-channel wire-
less networks. Queueing Systems: Theory & Applications, 2012. To appear

Chapter IV: Mathieu Feuillet and Philippe Robert. A scaling analysis of
a transient stochastic network (I). Preprint, 2012

Chapter V: Mathieu Feuillet and Philippe Robert. On the transient be-
havior of Ehrenfest and Engset processes. Advances in Applied Probability,
2012. To Appear

7.1. Chapter II: a Bandwidth Sharing Network without Congestion
Control. This chapter deals with a model of bandwidth sharing networks as intro-
duced in Section 3.3. Contrary to the literature, users are not assumed to employ a
congestion control algorithm but to transmit at maximum rate, their access rate, in
the network. They recover from packet losses thanks to error codes. It is proved in
[BFP09] that the bandwidth sharing is then characterized by the packet dropping
policy in routers. Two policies have been studied in that paper: Fair Dropping and
Tail Dropping. The �rst one consists in dropping packets in the biggest active �ow
while the second one consists in dropping packets at random. It has been proved
in [BFP09] that Fair Dropping is stable under the optimal stability conditions.
On the contrary, Tail Dropping results in an ine�cient use of the bandwidth in
many cases. Even worse, in the case of cyclic networks, all the available resources
are wasted and the stability region reduces to the case where the tra�c intensities
are null. However, it has been conjectured that the stability region is not trivial
for acyclic networks and that this stability region can be as close as wanted to the
optimal stability region if the maximum rates of users are small enough compared
to the capacity of the links in the network. The objective of Chapter II is to prove
this conjecture for two representative examples of topologies: linear networks and
upstream trees.
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A linear network consists of L links and L+ 1 classes such that �ows of class 0
are going through all links (the long route) and �ows of class k are going through
link k only (the short routes). Flows of class k arrive according to a Poisson process
of intensity λk and have an exponentially distributed size with parameter µk. The
capacity of each link is assumed to be 1. For the sake of simplicity, the maximum
rate of users in classes 0 and 1 is also equal to 1. The bandwidth allocation is
then determined by the fact that output rates are proportional to input rates. The
dynamics of the network is then represented by the process (N0(t), . . . , NL(t)) which
is a Markov process with transition rates{

q(n, n+ ek) = λk,

q(n, n− ek) = µkφk(n),

where ek denotes the L + 1-dimensional vector with every coordinate equal to 0
except the ith one equal to 1. The quantity φk(n) is the bandwidth allocation for
class k when the state is n. For instance, when L = 2, the bandwidth allocation is
given by:

φ0(n) = min

(
n0

n0 + n1
,

n0/(n0 + n1)

n0/(n0 + n1) + n2a2

)
,

φ1(n) =
n1

n0 + n1
,

φ2(n) = min

(
n2a2,

n2a2

n0/(n0 + n1) + n2a2

)
,

where a2 is the access rate of �ows of class 2.
In Chapter II, we �rst characterize the �uid limit of the Markov process (N0(t), . . . , NL(t)).

If the initial state is inside the orthant, i.e. Nk(0)/m tends to Zk(0) > 0 for all k
when m tends to in�nity, then it is easy to see that the �uid limit is very classical.
All the short classes except the �rst one use all the bandwidth of their link and the
�uid limits (Z(t)) satisfy

Ż0(t) = λ0,

Ż1(t) = λ1 − µ1
Z1(t)

Z0(t) + Z1(t)
,

Żk(t) = (λk − µk)1{Zk(t)>0}, for 2 ≤ k ≤ L

as long as there is 2 ≤ k ≤ L such that Zk(t) > 0. If λk < µk, then all the short
routes are null at some point, where there is a stochastic averaging phenomenon
arising as described in Section 6.4.4. The �slow� process is the �uid limit of class 0
and the fast process is the stochastic limit of (N2(t), . . . , NL(t)) which reaches some
local equilibrium depending on the ratio Z0(t)/(Z0(t)+Z1(t)). On the contrary, the
bandwidth allocation received by (Z0(t)) is averaged with respect to the stationary
distribution of the limit of (N2(t), . . . , NL(t)) and the �uid limit then satis�es the
equation

Ż0(t) = λ0 − µ0φ̄0

(
Z1(t)

Z0(t) + Z1(t)

)
,

Ż1(t) = λ1 − µ1
Z1(t)

Z0(t) + Z1(t)
,

Żk(t) = 0, for 2 ≤ k ≤ L

where φ̄0 is the averaged bandwidth allocation. Thanks to this allocation, we are
able to derive non-trivial upper and lower bounds on the stability region of the
process (N0(t), . . . , NL(t)).
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The second part of the chapter is dedicated to evaluating the impact of the
access rates on the stability region. For that purpose, we consider only the short
routes 2 ≤ k ≤ L and we keep frozen the ratio α = n0/(n0+n1). We are then able to
describe the dynamics of the short routes with a Markov process (Ñα

2 (t), . . . , Ñα
L (t)).

We then introduce a scaling on the access rates and the �ow size. Basically, we
consider the same process as previously but, for each class k, we replace the access
rates by ak/β, the arrival rate by λkβ and the departure rate µkβ. In that case,
we can prove that the process (Ñα

2 (t)/β, . . . , Ñα
L (t)/β) converges to the solution of

an ordinary di�erential equation. In particular, if λk < µk for 2 ≤ k ≤ L then this
equation admits a �xed point which satis�es:

γk(α) = max

(
ρk,

ρk
1− ρk

min

(
α, min

2≤j≤k−1
(1− ρj)

))
for 2 ≤ k ≤ L.

Since the stationary distributions of the processes (Ñα
2 (t), . . . , Ñα

L (t)) can be con-
trolled with some stochastic domination, we are able to prove that they converge
in distribution to (δγ2 , . . . , δγL). This, in turn, implies that the stability region of
the initial process (N0(t), . . . , NL(t)) converges to the optimal stability region when
the access rates decrease to 0.

An upstream tree is a network where �ows enter the network into a leaf then
follow a path to the trunk where they leave the network. Those networks are very
speci�c since the resulting stochastic processes describing the number of �ows in
each class are monotonic in the sense of the paper by Borst et al. [BJL08]. Using
the same scaling on the access rates and a stochastic domination argument, we are
able to prove recursively that the stability region of upstream trees tends to the
optimal stability region when the access rates decrease to 0.

The two cases that are treated in this chapter tend to con�rm that the con-
jecture is true. However, both proofs are ad-hoc and rely heavily on properties
inherent to the topology and we have not been able to generalize them. For that
reason, the conjecture is still open. From a technical point of view, we have been
able to exhibit a non-trivial averaging phenomenon and an interesting application
of scaling methods.

7.2. Chapter III: a Flow-Aware Access-Control Mechanism. This chapter
deals with a model of wireless network as the one introduced in Section 4. Here,
�ow dynamics is taken into account and the objective is to design an access-control
algorithm being optimal at �ow-level.

The chapter deals with wireless ad-hoc networks in a multi-channel environment
but, for the sake of simplicity, we present here the case of a single channel. In the
model we introduced, the network consists of a random, dynamic set of wireless
links in ad-hoc mode sharing a common radio channel. Each link consists of a
transmitter-receiver pair; the transmitter is able to use at most one radio channel
at a time. Links are grouped into a �nite number of K classes sharing similar
characteristics. Two links within the same class cannot be simultaneously active.
The channel is associated with some con�ict graph as the one introduced in Section
4. Links arrive in class k according to a Poisson process of parameter λk and have
a �ow with a geometric number of packets with mean σkN to transmit where N is
a positive integer. We call XN

k (t) the number of links in class k at time t.
In order to completely describe the network, we need to take into account

the packet-level dynamics. Packets are assumed to have an exponential size with
mean 1/N bits, which implies that the class-k mean �ow size is constant and equal
to σk bits. Links are assumed to use the standard CSMA algorithm where each
transmitter waits for a period of random duration, the back-o� time, before each
transmission attempt. If the radio channel is sensed idle (in the sense that no
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con�icting link is active), a packet is transmitted; otherwise, the transmitter waits
for a new back-o� time before the next attempt. The back-o� times of class-k
transmitters are random with mean 1/(Nνk). We denote by Y N (t) the activity of
class k at time t; Y N (t) is equal to 1 if there is a link of class k active at time t and 0
otherwise. The state of the network is then completely described by (XN (t), Y N (t))
which is a Markov process.

In order to evaluate the e�ciency of standard CSMA in this ad-hoc context, we
want to determine its stability region, i.e. the set of tra�c intensities (ρ1, . . . , ρK)
with ρk = λkσk such that the process (XN (t), Y N (t)) is ergodic. However, the pro-
cess (XN (t), Y N (t)) is very di�cult to analyze and, apart from some very speci�c
classes of interference graphs, we have not been able to derive its stability region.
The idea is then to use a scaling to approximate (XN (t), Y N (t)) by a simpler sys-
tem. For that purpose, we scale the parameter N to in�nity and we prove that a
stochastic averaging occurs (also called time-scale separation in this context). In-
deed, the process (Y N (t)) typically lives on the time scale t 7→ Nt and the process
(XN (t)) on the time scale t 7→ t. The limiting process of (Y N (t)) is then a reversible
process whose stationary distribution admits a closed-form expression:

πx(S) ∝
∏
k∈S

xk
νk
,

where S is a feasible schedule; there is no con�ict between two transmitting links.
This stationary distribution allows to express explicitly the transition rates of the
limiting process (X(t)) of the sequence (XN (t)):{

q(x, x+ ek) = λk,

q(x, x− ek) = 1
σk

∑
S:k∈S πx(S).

In fact, the stationary distribution πx approximates the Max-Weight Scheduling
algorithm where the weights are logarithmic in the sense that it chooses a schedule
of maximal weight with high probability. Thanks to this and the Foster criterion, we
are then able to prove that (X(t)) is stable if the tra�c intensities lie in the optimal
stability region. Here scaling methods allow to simplify a di�cult system into a
tractable one but, contrary to Chapter II, we are not able to obtain information
on the original process even for large N . In particular, the stability of the process
(XN (t), Y N (t)) remains an open problem.

In the second part of this chapter, we consider wireless networks with an in-
frastructure. The result of optimality obtained for ad-hoc networks is not true
anymore and there is an asymmetry between uplink and downlink. Indeed, each
user connected to the base station uses a back-o� mechanism as the base station
and this naturally favors the uplink while, in most cases, the downlink is more
critical. The suboptimality of standard CSMA is proved on two examples using
�uid limits. Again, a stochastic averaging phenomenon arises in the study of the
�uid limits. In the second part, we then propose a small modi�cation of CSMA to
ensure the optimality of this algorithm: it consists in using a back-o� mechanism
for each �ow. This also solves the problem of the asymmetry between the uplink
and the downlink.

7.3. Chapter IV: a Large-Scale Stochastic Network with Failures. We
consider a large-scale storage system as presented in Section 5. In order to ensure
persistence, �les are duplicated on several servers. When the disk of a given server
breaks down, its �les are lost but can be retrieved on other servers if copies are
available. In such an architecture, a fraction of the bandwidth of a server is devoted
to the duplication mechanism of its �les to other servers. On the one hand, there
should be su�ciently many copies so that any �le has a copy available on at least
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one server at any time. On the other hand, in order to use the bandwidth in an
optimal way, there should not be too many copies of a given �le so that the network
can accommodate a large number of distinct �les. The purpose of this chapter is to
investigate the evolution of the system when the number of �les tends to in�nity.

More precisely, we consider the following simple model. A �le can have at most
two copies, the total bandwidth allocated to �le duplication is given by λN , for
λ > 0 and N some positive integer. If at some moment there are x ≥ 1 �les with
exactly one copy, a new copy of each of these �les is created at rate λN/x. It is
assumed that initially FN �les are present in the system with two copies and each
copy of a �le disappears at rate µ. A �le with 0 copies is lost. The system can then
simply be described by the Markov process (XN

0 (t), XN
1 (t)) with transition rates

q(x, x+ e0 − e1) = µx1,

q(x, x+ e1) = 2µ(FN − x0 − x1),

q(x, x− e1) = λN1{x1>0}.

In particular, one can note that the process admits (FN , 0) as an absorbing state.
Furthermore, it is assumed that FN is proportional to N such that FN/N converges
to β > 0 whenN tends to in�nity. For δ > 0, there exists some �nite random instant
TN (δ), such that a fraction bδNc of the �les are lost after time TN (δ). This chapter
investigates the order of magnitude in N of the variables TN (δ) as N gets large and
the role of the parameters λ, µ and β in these asymptotics.

For that purpose, we look at the system through di�erent time scales in order
to understand how it works. First, we slow down the time and look at the time
scale t 7→ t/N . It is easy to see that (XN

1 (t/N)) converges then to an M/M/1
queue with arrival rate 2µβ and departure rate λ and (XN

0 (t/N)) converges to the
constant equal to 0. It is clearly not the right time scale to see losses but it gives a
�rst indication since the limiting process of (XN

1 (t/N)) is transient if 2µβ > λ and
ergodic if 2µβ < λ.

It is then natural to look at the normal time scale t 7→ t. In this case, as
suggested by the time scale t 7→ t/N , there are three possible regimes. If 2µβ > λ
then the back-up mechanism is not su�cient to prevent losses and there is a sig-
ni�cant fraction of �les that are lost from the beginning. Indeed, the process
(XN

0 (t)/N,XN
1 (t)/N) converges to (x0(t), x1(t)) the solution of the ordinary di�er-

ential equation: {
ẋ0(t) = −µx1(t),

ẋ1(t) = −λ− µx1(t) + 2µ(β − x0(t)− x1(t)).

However, when t tends to in�nity, the system (x0(t), x1(t)) tends to (β−λ/(2µ), 0),
that is to say the system tends to the maximum sustainable load. If 2µβ = λ,
the process (XN

0 (t), XN
1 (t)) is no more of order O(N) but O(

√
N) and we can

prove that (X0(t)/
√
N,X1(t)/

√
N) converges to a di�usion, solution of an unusual

stochastic di�erential equation re�ected at 0. Those two results can be proved using
the Skorokhod problem presented in Section 6.4.5.

Finally, when 2µβ < λ, the number of �les is sustainable and there are only
�nite losses. For all t, the random variable XN

1 (t) converges in distribution to a
geometrically distributed random variable with parameter 2µβ/λ. One can recall
that at time scale t 7→ t/N , (XN

1 (t/N)) converges to an M/M/1 queue and the
limit of XN

1 (t) can then be interpreted as the stationary distribution of an ergodic
M/M/1 queue. The process (XN

0 (t)) converges in distribution to a Poisson process
of parameter µ2µβ/(λ − 2µβ). One can note that the intensity of this Poisson
process is just the mean of the limiting geometric distribution of XN

1 (t) multiplied
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by the loss rate. This anticipates the stochastic averaging phenomenon happening
at time scale t 7→ Nt.

The time scale t 7→ t allows us to exhibit the capacity of the system but it
does not say anything about the decay rate of the network which is given by the
asymptotics of the random variables TN (δ). That is why we accelerate the time and
we consider the time scale t 7→ Nt. The only interesting case here is when 2µβ < λ.
Since the process XN

1 (t/N) behaves like anM/M/1 queue when N tends to in�nity,
we can prove that XN

1 (Nt) remains bounded on each �nite interval and the number
of �les with 1 copy is negligible compared to FN . Consequently, if we call Ψ(t) the
fraction of lost �les �at time Nt� when N tends to in�nity, the fraction of �les with
two copies is β − Ψ(t). As for the the time scale t 7→ t, the number of �les with
1 copy behaves as an M/M/1 queue with arrival rate 2µ(β −Ψ(t)) and departure
rate λ at equilibrium and the loss rate is then µ2µ(β − Ψ(t))/(λ − 2µ(β − Ψ(t)))
and we obtain the following equation for (Ψ(t)):

Ψ(t) = µ

∫ t

0

2µ(β −Ψ(s))

λ− 2µ(β −Ψ(s))
ds.

This is another example of the stochastic averaging phenomenon as described in
Section 6.4.4, the fast process being (XN

1 (t/N)) and the slow process (XN
0 (tN)/N).

One can note that the factor between the two time scales is N2 contrary to other
examples developed in this thesis where it is typically N .

Finally, we are able to derive asymptotics on TN (δ) with the previous equation
and we obtain

lim
N→+∞

TN (δ)

N
= −ρ

2
log(1− δ)− δβ.

7.4. Chapter V: the Transient Behavior of the Engset Model. Contrary
to Chapter IV where the storage system is modeled globally, this chapter focuses
on the durability of a speci�c �le. We assume that a �le is stored in a set of N
servers but can have at most CN copies. As previously, servers can break down and
each copy is lost at rate µ. There is a back-up mechanism downloading the �le in
the empty servers. We assume that each server can download a copy at rate ν. We
denote by (XN (t)) the process describing the number of copies of the �le, it admits
the following transition rates{

q(x, x+ 1) = ν(N − x)1{x<CN},

q(x, x− 1) = µx.

This corresponds to the classical Engset model which has been introduced in Section
2. The purpose of this chapter is to estimate the durability of the �le and so we
would like to evaluate T0, the hitting time of 0 when there are initially CN copies
of the �le. In particular, we want to derive asymptotics on T0 when N tends to
in�nity and CN/N converges to η > 0.

This chapter relies on martingale techniques introduced in Section 6.3. For
that purpose, we start by studying the classical Ehrenfest process (EN (t)) whose
transition rates are q(x, x + 1) = ν(N − x) and q(x, x − 1) = µx. Using classical
techniques, we are then able to prove that the process

(M(t)) =

((
1− βµe(µ+ν)t

)EN (t) (
1 + βνe(µ+ν)t

)N−EN (t)
)

is a martingale for any β ∈ R. With some calculation and the stopping time
theorem, we are then able to derivate the Laplace transform of TCN the hitting
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time of CN when starting from 0 for the process (EN (t)):

E0

(
e−αTCN

)
=

∫ 1

0

(1− u)Nuα−1 du∫ 1

0

(1− u)CN
(

1 +
ν

µ
u

)N−CN
uα−1 du

.

Since conditioned on t being smaller than TCN , both processes (EN (t)) and (XN (t))
have the same distribution, this result is also valid for (XN (t)).

On the contrary, the processes (EN (t)) and (XN (t)) do not have the same
dynamics when we consider the hitting time T0 because of the boundary e�ect at
state CN . For that reason, we have to build a family of non-negative martingales
for the Engset process. The idea is the same as the one used for the M/M/1 queue
by Kennedy in [Ken76] and described in Section 6.3. We construct a martingale
as a linear combination of two martingales and use the fact that the in�nitesimal
generators of both processes are identical everywhere except in CN . With this new
martingale, the Laplace transform of T0 can be obtained.

With those two Laplace transforms, we are then able to compute the asymp-
totics of these hitting times with respect to the parameters ν, µ and η. The basic
ingredients of those estimates are the Laplace method and elementary (but careful)
analysis.

We are then able to answer the initial question. Notably, if η > ν, the random
variable N(1−ν)NT0 converges in distribution to an exponential random variable of
parameter ν. If η = ν, the random variable N(1− ν)NT0 converges in distribution
to an exponential random variable of parameter 2ν. On the contrary, if η < ν, the
scaling factor is strictly smaller than N(1−ν)N and depends on η. So the optimum
is reached as soon as η = ν + ε. In practice, if the maximum number of copies
is increased, the system is not able to increase the number of copies which stays
around νN .
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1. Introduction

Most Internet tra�c derives from the transfer of stored documents, correspond-
ing to texts, music and movies. This tra�c is elastic in the sense that the transmis-
sion rate varies depending on current network congestion. Each document transfer
is a �ow of packets whose rate is usually regulated by the Transmission Control
Protocol (TCP). The rate is allowed to increase linearly until a packet loss is ob-
served. The rate is then divided by two. These two mechanisms ensure that network
bandwidth is shared approximately fairly between the varying number of �ows in
progress at any time. TCP also ensures that lost packets are retransmitted.

There is, however, no constraint on users to actually implement TCP algorithm
and a more aggressive, greedy congestion control would be individually more prof-
itable. Indeed, new, more aggressive versions of TCP are emerging to better exploit
increasing link capacity [Flo03, JWL04, XHR04]. Some have suggested that the
packet retransmission function of TCP could be replaced by forward error correc-
tion in the form of source coding [RS05]. It consists in the use of erasure codes in
order to encode �les before sending them into the network. As a consequence, if the
�le has been divided in K packets, the destination is able to rebuild the data with
(1+ε)K packets. A typical class of erasure codes which is adapted to source coding
are the Digital fountains [Mit04]. The use of source coding enables the relaxation
of control requirements and facilitates aggressive packet transmission policies.

If the congestion avoidance of TCP is no longer universally used, there is a
danger that the Internet may again experience the congestion collapse observed in
its early days [Nag84]. Packets dropped downstream and therefore retransmitted
needlessly encumber upstream links, amplifying and spreading congestion. The
consequence may be that the rate realized by concurrent �ows is much less than
the optimum (in terms of utility maximization) and may even tend to zero. The
capacity of a network can be de�ned as the demand, �ow arrival rate × mean
�ow size, that can be sustained. It depends on the way bandwidth is shared. It
is important to understand what happens to capacity when the assumption that

35
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users compliantly implement TCP is relaxed. This is our objective in the present
chapter.

In this chapter, we assume users are greedy and do not implement congestion
control. They send data at the greatest possible rate determined by an external
constraint that we assimilate to an access rate. Bandwidth sharing is determined
by this behavior. We consider a �ow-level model, as decribed in [MR00], where
the bandwidth allocation changes instantly as new �ows arrive or existing �ows
terminate. Tail dropping is interpreted in this model such that, at each link, the
output rate of �ows is proportional to their input rate to the link in question. This
is consistent with the assumption that packets are all equally likely to be dropped.
The drop rate is such that the overall output rate is bounded by the link capacity.
Flows are categorized into classes de�ned by their route and their access rate.
We assume �ows arrive according to a Poisson process and have an exponentially
distributed size. The stochastic process describing the number of �ows in each class
is a Markov process. We say that the network is stable when this process is positive
recurrent and unstable otherwise.

To illustrate the realized bandwidth sharing without congestion control, con-
sider the linear network depicted in Figure 2 with two links 1, 2 of capacity C1

and C2, respectively, n0 class-0 �ows going through links 1 and 2, n1 class-1 �ows
going through link 1 and n2 class-2 �ows going through link 2. The access rate
for class-k �ows is denoted by ak. The aggregate input rates of classes 0 and 1 at
the �rst link are respectively n0a0 and n1a1 and the total input rate at link 1 is
R1 = n0a0 + n1a1. If R1 > C1, then the �rst link is saturated and the aggregate
output rates of classes 0 and 1 are respectively

θ1
0 = C1

n0a0

n0a0 + n1a1
and θ1

1 = C1
n1a1

n0a0 + n1a1
.

If R1 ≤ C1 then the �rst link is not saturated and θ1
0 = n0a0 and θ1

1 = n1a1. The
aggregate input rate of class 0 at link 2 is θ1

0 and the aggregate input rate of class
2 is n2a2. As above, we derive the respective aggregate output rates of class 0 and
2 after link 2:

θ2
0 = θ1

0 min

(
1,

C2

θ1
0 + n2a2

)
and θ2

2 = n2a2 min

(
1,

C2

θ1
0 + n2a2

)
.
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Figure 1. A cyclic network Figure 2. A linear network

The question of the capacity of networks without congestion control has already
been addressed in [BFP09]. It was shown that congestion collapse does occur in
cyclic networks like that depicted in Figure 1 where the system is unstable for any
positive demand. In acyclic networks, however, capacity is not reduced to 0 and
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this performance degradation is signi�cantly mitigated by the access rates. It was
conjectured in [BFP09] that capacity in acyclic networks increases as access rates
tend to 0 and, in the limit, is determined only by the optimal per-link stability
conditions. Here, we prove that the conjecture is indeed true for two particular
acyclic topologies, linear networks and upstream trees. For linear networks, we
derive bounds on stability conditions for arbitrary access rates.

Averaging Phenomenon. We evaluate stability conditions by applying �uid
limit techniques. The end-to-end class in a linear network plays a particular role. In
the �uid limit, all other �ow classes are shown to empty in �nite time for any initial
conditions. When all these classes are empty, a phenomenon of averaging occurs
and allows us to prove that the end-to-end class also empties in �nite time. In that
situation, the rate at which this class evolves depends on the stochastic evolution
of the remaining local classes which in turn depends on the current �uid state
of the end-to-end class. This dependence is decoupled by a time scale separation
argument. The rate at which the �uid component (the end-to-end �ow) evolves
is in�nitely slower than the rate at which the stochastic components evolve. It
is therefore possible to apply a quasi-stationary model through which the average
impact of the local tra�c can be evaluated.

This is a non-trivial example of a local equilibrium of �uid limits. A simpler
example of such a phenomenon can be found in [Rob03, 9.6, p271]. Averaging
in �uid limits has also been considered in the context of wireless networks (see
[BBP04] and subsequent papers [ST10] and [GLM+10]). The main di�erence
here is that the local equilibrium depends on the state of the �uid limit. Note that
this is somewhat related to the averaging phenomenon considered for loss networks
[HK94].

To evaluate the impact of access rates on capacity, we introduce an ad-hoc
scaling. Scaled processes are shown to converge to a simple deterministic process.
Generally speaking, the convergence of processes does not imply the convergence
of stationary distributions. However, in our case, we can prove this is true in
two speci�c cases exhibiting an interesting example of limit inversion for stochastic
processes. We use the same technique as in [DGR02] to prove this inversion.
We use the convergence of stationary distributions combined with the averaging
phenomenon to prove the asymptotic optimality of linear networks. For upstream
trees, we use convergence and monotonicity.

The chapter is structured as follows. In Section 2, we give a complete descrip-
tion of the considered model. In Section 3, we study the stability conditions of
linear networks with general access rates. In Section 4, we study the stability of
linear networks and upstream trees when access rates decrease to 0 and prove their
capacity is asymptotically optimal.

2. Flow-Level Model

2.1. Bandwidth Allocation. Consider a network of L links. Denote by Cl the
capacity of link l. A number of �ows compete to share the capacity of these links.
The �ows are categorized into a set ofK classes. Each class-k �ow has an access rate
to the network denoted by ak and follows a route of length dk de�ned as an ordered
set of distinct links rk = {rk(1), rk(2), . . . , rk(dk)}. Let x = (x1, . . . , xK) be the
vector of input rates of all classes, ψk(x) the aggregate throughput of class-k �ows.
We refer to the vector ψ(x) = (ψ1(x), . . . , ψK(x)) as the bandwidth allocation.

Here, we consider allocations that result when users are greedy and transmit
at their maximum input rate in the network without any congestion control. There
can be losses on each link of the network and we need to describe the evolution of
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the rate of each �ow going through the network. Speci�cally, we assume that class-
k �ows initially transmit at full rate θ0

k(x) = xk = nkak where nk is the number
of class-k active �ows and we denote by θik(x) the class-k rate at the output of the
i-th link on its route rk, for i = 1, 2, . . . , dk. The actual throughput ψk(x) of class
k corresponds to the aggregate throughput of class-k �ows at the output of the last
link on their route, ψk(x) = θdkk (x). Due to potential loss at each link, we have

(2.1) ψk(x) = θdkk (x) ≤ θdk−1
k (x) ≤ . . . ≤ θ1

k(x) ≤ θ0
k(x) = xk = nkak.

In particular, θi−1
k (x)− θik(x) is the loss for class k occurring at the i-th link on its

route.
The total rate at the output of each link cannot exceed the capacity of this

link, so that

(2.2) ∀l,
∑

k,i:rk(i)=l

θik(x) ≤ Cl.

In order to characterize the allocation achieved in the absence of congestion
control, it remains to determine how output rates depend on input rates at each
link. This depends on the bu�er management policy. In the considered �uid model,
losses occur on saturated links only when the total input rate exceeds the capacity;
the total output rate is then assumed to be equal to the capacity. In the following,
we consider a single bu�er management policy, Tail Dropping, which simply consists
in dropping each incoming packet when the bu�er is full. We deduce that, at the
�ow level, the output rate of classes from the link is proportional to the input rate
of classes to the link.

Speci�cally, let Rl(x) be the total input rate of link l:

Rl(x) =
∑

k,i:rk(i+1)=l

θik(x).

If Rl(x) ≤ Cl then link l is not saturated and there are no losses; the output rate
is equal to the input rate for each class. If Rl(x) > Cl, then the link is saturated
and there are losses proportional to the input rate. The output rate of any class k
then satis�es for all i = 1, 2, 3, . . . , dk,

(2.3) θik(x) = θi−1
k (x) min

(
Cl

Rl(x)
, 1

)
where l = rk(i).

When there is no ambiguity and when the access rates are �xed, the bandwidth
allocation is determined by the number of �ows in each class. We denote by n =
(n1, . . . , nK) the vector of the numbers of �ows in progress and by the vector φ(n) =
(φ1(n), . . . , φK(n)) the bandwidth allocation where, for each k, φk(n) = ψk(a� n)
where � denotes the componentwise product.

For example, we can consider a linear network under tail dropping (see Section
3) with two links of capacity 1 with access rates all equal to 1 and 1 �ow in each
class. We get the following bandwidth allocation:

φ0(1, 1, 1) =
1

3
, φ1(1, 1, 1) =

1

2
, φ2(1, 1, 1) =

2

3
.

It is not obvious that (2.3) de�nes a unique allocation for all networks. The def-
inition is clearly non-ambiguous for acyclic networks, i.e., if links can be numbered
in such a way that each route consists of an increasing sequence of link indexes. The
allocation then directly follows from applying (2.3) to all l = 1, . . . , L, successively.
For general networks, the allocation is still well-de�ned and unique as proved in
[BFP09]. Here, we consider only acyclic networks.
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2.2. Flow Dynamics. We assume that class-k �ows are generated according to
a Poisson process of intensity λk and have independent, exponentially distributed
sizes with mean 1/µk. We de�ne the tra�c intensity of class-k �ows as ρk = λk/µk.

Under the above assumptions, let N(t) denote the number of �ows at time
t, (N(t), t ∈ R+) de�nes a Markov process with transition rates λk from state n
to state n + ek and φk(n)µk from state n to state n − ek, where ek denotes the
vector with 1 in the k-th component and 0 elsewhere. We say that the network
is stable when this Markov process is ergodic. There is a well-known necessary
stability condition (see [BMPV06]) which is that the tra�c intensity is less than
the capacity for all links:

(2.4) ∀l,
∑
k:l∈rk

ρk < Cl.

An allocation will be called optimal if this condition is also su�cient. In the rest
of this chapter, this condition will be further referred to as the optimal stability
condition.

In the following, we study stability conditions for two speci�c classes of net-
works. In Section 3, we consider linear networks. In Section 4, we study the
behavior of stability conditions when the access rates are small for linear networks
and upstream trees.

3. Stability Conditions for a Linear Network

3.1. Linear Networks. We consider a linear network with L links as depicted in
Figure 2. For the sake of simplicity, we assume that the capacity of all links is 1
but all the results are true in the general case and can be obtained by adapting
the notation. The linear network has K = L+ 1 di�erent classes of �ows. Class-0
�ows go through all links. We label the links of the network from 1 to L. Link l
is the l-th link on the route of class-0 �ows. Class-l �ows go through link l only.
Equation (2.3) can be rewritten as follows for a given state n and for 1 ≤ k ≤ L:

θk0 (x) = min

(
θk−1

0 (x),
θk−1

0 (x)

θk−1
0 (x) + xk

)
,

θ1
k(x) = min

(
xk,

xk

θk−1
0 (x) + xk

)
.

To simplify the presentation, we suppose that a0 = 1 and a1 = 1. In that case,
a single �ow of class 0 or 1 is enough to saturate the �rst link and we have

θ1
0(n� a) =

n0

n1 + n0
and θ1

1(n� a) =
n1

n0 + n1
.

All the results presented here remain true without this assumption. Only the proof
of Proposition 4.12 has to be adapted.

In the rest of this section, we study the stability conditions of the stochastic
process resulting from this linear network. The optimal stability conditions (2.4)
are:

(3.1) ρ0 + ρk < 1 for 1 ≤ k ≤ L.

3.2. General Fluid Limits. We show that classes 2, . . . , L are favored compared
to classes 0 and 1 in the sense that the ergodicity conditions of classes 2, . . . , L do
not depend on classes 0 and 1 but the contrary is not true.

In order to study the ergodicity of the system, we need to de�ne �uid limits.
In the following, we consider the norm such that for x ∈ RK , ‖x‖ =

∑K
i=1 |xi|.

Let (mi, i ∈ N) be a sequence of NK such that limi→∞ ‖mi‖ = ∞. De�ne for all
m ∈ NK , the process (Nm(t)) describing the system evolution under tail dropping
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when starting at Nm(0) = m. A �uid limit Z̄ of the system is de�ned as an
accumulation point of the laws of the processes in the set

C =
{

(Nmi(‖mi‖t)/‖mi‖, t ≥ 0), i ∈ N
}

which is regarded as a subset of the space DRN+ ([0,∞)) with Skorohod topology

(see [Bil99]). It can be proved, as in [Rob03, Prop 9.3 p 246], that the set C is
relatively compact and that all the �uid limits Z̄ are continuous.

In order to prove ergodicity of the process (N(t)), we just have to prove that
there exists a time T such that for any initial condition of (Z̄(t)), for all t ≥ T ,
Z̄(t) = 0 (see [Dai95]). On the contrary, in order to prove transience, we have to
prove that there exists a time T such that after T , any �uid limit (Z̄(t)) increases
linearly (see [Mey95]). For that purpose, we have to characterize the �uid limits.

First, we consider �uid limits such that there exists 2 ≤ k0 ≤ L with Z̄k0(0) > 0.
At the stochastic level, for each k ≥ 2, class k can use an arbitrarily large part of
link k leaving almost nothing to class 0; for any ε > 0, since θk−1

0 (n� a) ≤ 1, if nk
is large enough, we have

φk(n) ≥ 1− ε, and θk0 (n� a) ≤ ε.

Thus, at �uid level, the throughput for (Z̄k(t)) is always 1 if Z̄k(t) > 0. On the
contrary, the throughput for (Z̄0(t)) is 0 as long as there exists k0 with Z̄k0(t) > 0.
We can prove, as in [Rob03, Prop 9.4, p247], the following proposition.

Proposition 3.1. If (Z̄(t)) is a �uid limit of the system and there exists some time
interval [0, t0] such that for any t ∈ [0, t0], there is some k0 in {2, . . . , L} such that
Z̄k0(t) > 0 then, almost surely, (Z̄(t)) is di�erentiable on [0, t0] and satis�es for all
t ∈ [0, t0],

˙̄Z0(t) = λ0,(3.2)

˙̄Z1(t) = λ1 − µ1
Z̄1(t)

Z̄0(t) + Z̄1(t)
,(3.3)

˙̄Zk(t) = (λk − µk)1{}{Z̄k(t) > 0} for 2 ≤ k ≤ L.(3.4)

For 2 ≤ k ≤ L, Z̄k(t) thus decreases linearly to 0 if ρk < 1. Note also that
(Z̄k(t)) for 2 ≤ k ≤ L does not depend on classes 0 and 1. This illustrates the
strong asymmetry between classes 0 and 1 on one hand and classes 2, . . . , L on the
other hand.

If there exists 2 ≤ k0 ≤ L such that ρk0 > 1 then it is clear that the �uid
limit will increase linearly to in�nity and the process (N(t)) is transient. On the
contrary, if ρk0 < 1 for all 2 ≤ k ≤ L then there exists a time T such that for t ≤ T
and 2 ≤ k ≤ L, Z̄k(t) = 0. In order to study ergodicity and transience of (N(t)) we
then have to characterize the �uid limits such that Z̄k(0) = 0 for 2 ≤ k ≤ L. This
is the purpose of the next subsection.

3.3. Quasi-Stationary Fluid Limits. Before studying �uid limits, we need to
de�ne the average throughput of class 0 in the quasi-stationary case. This cor-
responds to the case where the number of �ows in classes 0 and 1 is �xed and
the number of �ows in classes 2, . . . , L varies. In the following, we denote by
x2:L = (x2, . . . , xL) the input rates of classes 2, . . . , L. Fixing the number of �ows
in classes 0 and 1 is equivalent to considering a �xed rate α for class 0 after link 1.
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Since link 1 is of capacity 1, α ∈ [0, 1]. De�ne θ̃1
0(α, x2:L) = α and, for 2 ≤ k ≤ L,

θ̃k0 (α, x2:L) = min

(
θ̃k−1

0 (α, x2:L),
θ̃k−1

0 (α, x2:L)

θ̃k−1
0 (α, x2:L) + xk

)
,(3.5)

ψ̃k(α, x2:L) = min

(
xk,

xk

θ̃k−1
0 (α, x2:L) + xk

)
.(3.6)

The quantity θ̃k0 (α, x2:L) is the output rate of class 0 after link k and the throughput
of class 0 is ψ̃0(α, x2:L) = θ̃L0 (α, x2:L). Moreover, ψ̃k(α, x2:L) is the throughput of
class k. For 0 ≤ k ≤ L and for n2:L ∈ NK−2, we de�ne φ̃k(α, n2:L) = ψ̃k(α, n2:L�a).

Denote by (Ñα
2:L(t)) the Markov process describing the evolution of classes

2, . . . , L in the quasi-stationary case. It is de�ned on NK−2 and its transition rates
are, for 2 ≤ k ≤ L,

nk → nk + 1 : λk,

nk → nk − 1 : µkφ̃k(α, n2:L).

Proposition 3.2. Consider a linear network with L links of capacity 1 in the quasi-
stationary case, i.e., when the number of �ows in classes 0 and 1 is �xed and the
rate of class 0 after link 1 is α.

The Markov process (Ñα
2:L(t)) describing the evolution of classes 2, . . . , L is

ergodic if, for 2 ≤ k ≤ L, ρk < 1. It is transient if there exists k0 in {2, . . . , L}
such that ρk0 > 1.

Proof. It is enough to see that for 2 ≤ k ≤ L,

min (nkak, Ck) ≥ φ̃k(α, n2:L) ≥ nkak
Ck−1 + nkak

.
Since Ck = 1, if ρk < 1 for all k, there exists ε > 0 and η in N such that for all

n2:L in NK−2 \ {0, . . . , η}K−2 and for 2 ≤ k ≤ L such that nk ≥ η,

λk − µkφ̃k(α, n2:L) ≤ −ε

and (Ñα
2:L(t)) is therefore ergodic.

Conversely, if there exists k0 such that ρk0 > 1, then there exists ε > 0 and η
such that for all n2:L with nk0 > η,

λk0 − µk0 φ̃k0(α, n2:L) ≥ ε

and (Ñα
2:L(t)) is therefore transient. �

When (Ñα
2:L(t)) is ergodic, denote its unique stationary distribution by π̃α. The

average throughput of class 0 in the quasi-stationary case is then de�ned as follows:

(3.7) ∀α ∈ [0, 1] φ̄0(α) = Eπ̃α(φ̃0(α, .)) =
∑

n2:L∈NK−2

π̃α(n2:L)φ̃0(α, n2:L).

The average φ̄0 depends on the tra�c intensities and access rates of classes
2, . . . , L. In order to establish ergodicity and transience conditions for the linear
network in Theorems 3.6 and 3.7 below, we need the continuity of the function φ̄0

with respect to α.
Subsequent developments rely on the following notion of stochastic domination.

Definition 3.3. Let X and Y be two random variables in a partially ordered mea-
surable space. We denote X ≤st Y and say that Y stochastically dominates X if,
for any positive non-decreasing measurable function f , we have E[f(X)] ≤ E[f(Y )].
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On Rn, we use the usual coordinate-wise partial orders. If x and y are in
Rn, x ≤ y if xk ≤ yk for all k. On the space D(R+,Rn), we say that x ≤ y if
xk(t) ≤ yk(t) for all k and t.

For any two random variables X and Y with respective distributions πX and
πY and such that X ≤st Y , we say that πY dominates πX .

In particular, if (X(t)) and (Y (t)) are two Markov processes on Nn such that
(X(t)) ≤st (Y (t)) and (X(t)) is irreducible, the ergodicity of (Y (t)) implies the
ergodicity of (X(t)) and the transience of (X(t)) implies the transience of (Y (t)).
If (Y (t)) and (X(t)) are ergodic andX(∞) and Y (∞) are random variables with the
stationary distributions of (X(t)) and (Y (t)) as distributions thenX(∞) ≤st Y (∞).
For more details on stochastic domination, see [Mas87].

Lemma 3.4. Consider a linear network with L links of capacity 1 in the quasi-
stationary case and assume that ρk < 1 for 2 ≤ k ≤ L, the function φ̄0 de�ned by
Equation (3.7) is continuous with respect to α on [0, 1].

Proof. First, we prove that α 7→ φ̃k(α, n2:L) is 1-Lipschitz for all n2:L and k.
By de�nition, α 7→ θ̃1

0(α, n2:L) is 1-Lipschitz. According to (3.5) and (3.6), α 7→
θ̃2

0(α, n2:L) and α 7→ φ̃2(α, n2:L) are de�ned as the minimum of two 1-Lipschitz
functions and are then 1-Lipschitz functions. The result follows by recursion.

In particular, this is true for α 7→ φ̃0(α, n2:L). In order to prove the continuity
of φ̄0, we just have to prove that if a sequence (αi) of [0, 1] converges to α∞, then
Ñαi

2:L(∞) converges in distribution to Ñα∞
2:L (∞) and these random variables have

π̃αi and π̃α∞ as respective distributions.
We �rst prove that {π̃α, α ∈ [0, 1]} is tight. Note that for 2 ≤ k ≤ L and α in

[0, 1],

(3.8) φ̃k(α, n2:L) ≥ nkak
1 + nkak

.

De�ne the process (N̂2:L(t)) with the following transition rates for 2 ≤ k ≤ L:

nk 7→ nk + 1 : λk,

nk 7→ nk − 1 : µk
nkak

1 + nkak
,

and such that N̂2:L(0) = Ñα
2:L(0). The components of (N̂2:L(t)) are independent.

For 2 ≤ k ≤ L, we have ρk < 1 and there exist ε > 0 and η such that, for nk ≥ η,
we have

λk − µk
nkak

1 + nkak
< −ε,

which implies that (N̂k(t)) is ergodic; the ergodicity of (N̂2:L(t)) follows. Using
Equation (3.8) and a standard coupling argument, see for instance [BJL08, Lemma
1], we can prove that, for α in [0, 1] and 2 ≤ k ≤ L, (N̂k(t)) stochastically dominates
(Ñα

k (t)). It implies that (N̂2:L(t)) stochastically dominates (Ñα
2:L(t)) for any α ∈

[0, 1]. This implies that the stationary distribution π̂ of (N̂2:L(t)) dominates any
distribution π̃α. In particular, we have

∀α ∈ [0, 1],∀κ ∈ R, π̃α(NK−2\[0, κ]K−2) ≤ π̂(NK−2\[0, κ]K−2).

Thus, the set {π̃α, α ∈ [0, 1]} is tight on NK−2 with the usual topology.
By tightness, we can suppose that the sequence (π̃αi)i∈N is convergent. We

call π̃∞ its limit. All we have to do now is to characterize this limit and prove its
uniqueness.
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Let f be a bounded function on NK−2. For any α in [0, 1], let Ω̃α denote the
in�nitesimal generator of (Ñα

2:L(t)). For all n2:L ∈ NK−2,

Ω̃α(f)(n2:L) =

L∑
k=2

λk(f(n2:L + ek)− f(n2:L))

−
L∑
k=2

µkφ̃k(α, n2:L)(f(n2:L − ek)− f(n2:L)).

Since α 7→ φ̃k(α, n2:L) is 1-Lipschitz for all n2:L and k and f is bounded, there
exists η such that

(3.9) ∀i ∈ N, ∀n2:L ∈ NK−2, |Ω̃α∞(f)(n2:L)− Ω̃αi(f)(n2:L)| ≤ η|α∞ − αi|.

Because (π̃αi) is tight, for any ε, there exists κ > 0 such that

(3.10) ∀i ∈ N, π̃αi([0, κ]K−2) ≥ 1− ε.

Using equations (3.9)) and (3.10), we have

lim
i→∞

∫
NK−2

Ω̃αi(f)(n2:L)π̃αi(dn2:L) =

∫
NK−2

Ω̃α∞(f)(n2:L)π̃∞(dn2:L) = 0.

We deduce that π̃∞ is an invariant distribution of (Ñα∞
2:L (t)) and by uniqueness, we

have π̃∞ = π̃α∞ . Finally, we have

lim
i→∞

φ̄0(αi) = φ̄0(α∞).

�

We are now able to characterize the �uid limits (Z̄(t)) such that Zk(0) = 0 for
2 ≤ k ≤ L. The next proposition is proved in the appendix.

Proposition 3.5. Consider a linear network of L links of capacity 1 and assume
that a0 = 1 and a1 = 1.

If (Z̄(t)) is a �uid limit of the system such that Z̄k(0) = 0 for 2 ≤ k ≤ L, then
almost surely

˙̄Z0(t) = λ0 − µ0φ̄0

(
Z̄0(t)

Z̄1(t) + Z̄0(t)

)
,(3.11)

˙̄Z1(t) = λ1 − µ1
Z̄1(t)

Z̄1(t) + Z̄0(t)
,(3.12)

˙̄Zk(t) = 0 for 2 ≤ k ≤ L(3.13)

hold for all t ∈ R+ where φ̄0 is the average throughput of class 0 in the quasi-
stationary case de�ned by Equation (3.7).

This proposition shows that, at the �uid time scale, there is a separation of
time scales between classes 0 and 1 and 2, . . . , L. From the point of view of classes
0 and 1, classes 2, . . . , L are quasi-stationary and there is an averaging because
they evolve in�nitely faster. From the point of view of classes 2, . . . , L, the ratio of
classes 0 and 1 is constant. This is a further illustration of the asymmetry between
classes 0, 1 on the one hand and classes 2, . . . , L on the other hand.

3.4. Stability of a Linear Network. Now that we have characterized the �uid
limits of the system, we can study the stability conditions of the linear network.
Theorem 3.6 gives a su�cient condition for stability and Theorem 3.7 gives a suf-
�cient condition for transience of (N(t)).
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Theorem 3.6. Consider a linear network of L links of capacity 1.
If ρk < 1 for 2 ≤ k ≤ L and

ρ0 < inf
1−ρ1≤x≤1

φ̄0(x)

then the network is stable, i.e., (N(t)) is ergodic.

Proof. In order to prove ergodicity, we just have to prove that there exists a time
T such that for any initial condition of (Z̄(t)), for all t ≥ T , Z̄(t) = 0 (see [Dai95]).

We consider a general �uid limit (Z̄(t)). As proved in Proposition 3.1, as long
as there exists k0 such that Z̄k0(t) > 0, (Z̄(t)) satis�ed Equations (3.2), (3.3) and
(3.4). Since ρk < 1 for 2 ≤ k ≤ L, there exists a �nite time T0 such that, for all
k ≥ 0 and t ≥ T0, Z̄k(t) = 0. According to the strong Markov property, the study is
reduced to the case where the initial state of the �uid limit veri�es Z̄0(0)+Z̄1(0) = 1
and Z̄k(0) = 0 for 2 ≤ k ≤ L. According to Proposition 3.5, (Z̄(t)) satis�es (3.11),
(3.12) and (3.13). In particular, for all t ≥ 0 and 2 ≤ k ≤ L, we have Z̄k(t) = 0,
we then just have to study the behavior of (Z̄0(t), Z̄1(t)).

We de�ne the following function:

∀α ∈ [0, 1], f(α) = inf
α≤x≤1

φ̄0(x)

This function is continuous, non-decreasing and satis�es f(α) ≤ φ̄0(α) for all α ∈
[0, 1]. We de�ne (F (t)) such that F0(0) = Z̄0(0), F1(0) = Z̄1(0) and for all t ≥ 0,

Ḟ0(t) = λ0 − µ0f

(
F0(t)

F0(t) + F1(t)

)
,(3.14)

Ḟ1(t) = λ1 − µ1
F1(t)

F0(t) + F1(t)
.(3.15)

Since we have φ̄0(α) ≥ f(α), we can deduce for all t ≥ 0, Z̄0(t) ≤ F0(t) and
Z̄1(t) ≤ F1(t). This follows from the following.

� If Z̄0(t) = F0(t) and Z̄1(t) = F1(t) then ˙̄Z0(t) ≤ Ḟ0(t) and ˙̄Z1(t) ≤ Ḟ1(t);

� if Z̄0(t) < F0(t) and Z̄1(t) = F1(t) then ˙̄Z1(t) ≤ Ḟ1(t);

� if Z̄0(t) = F0(t) and Z̄1(t) < F1(t) then ˙̄Z0(t) ≤ Ḟ0(t).
To prove the stability of (Z̄(t)), it is enough to prove that (F (t)) will return to

0 in �nite time. Let α(t) = F0(t)/(F0(t) + F1(t)). We have
(3.16)

α̇(t) =
1

F0(t) + F1(t)

[
(λ0 − µ0f(α(t))) (1− α(t))− (λ1 − µ1(1− α(t)))α(t)

]
.

Let β(t) = (λ0 − µ0f(α(t))) (1− α(t))− (λ1 − µ1(1− α(t)))α(t). So that

(3.17) α̇(t) =
β(t)

F0(t) + F1(t)
.

We also de�ne α0 = max{α ∈ [0, 1], f(α) = ρ0}. Since ρ0 < f(1 − ρ1), we have
α0 < 1− ρ1. Further, for t0 such that α(t) = α0 and t1 such that α(t1) = 1− ρ1,

β(t0) = α0(µ1(1− α0)− λ1) > 0,

β(t1) = ρ1(λ0 − µ0f(1− ρ1)) < 0.

Since f is continuous and non-decreasing, there exists κ > 0 and η > 0 such that if
α(t) ≤ α0 + η, then β(t) ≥ κ and if α(t) ≥ 1− ρ1 − η, then β(t) ≤ −κ.

As a consequence, we deduce from Equation (3.17) that

α̇(t) ≥ κ

F0(t) + F1(t)
if α(t) ≤ α0 + η,

α̇(t) ≤ − κ

F0(t) + F1(t)
if α(t) ≥ 1− ρ1 − η.
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Figure 3. Dynamics of (F0(t), F1(t))

Thus, if α(0) ∈ [α0 + η, 1− ρ1 − η], α(t) ∈ [α0 + η, 1− ρ1 − η] for all t > 0.
For all t ≥ 0, we have

F0(t) + F1(t) ≤ F0(0) + F1(0) + (λ0 + λ1)t,

≤ 1 + (λ0 + λ1)t,

and we deduce that if α(0) is in [0, α0 + η] and as long as α(t) stays in [0, α0 + η],
we have

α(t) ≥
∫ t

0

κds

1 + (λ0 + λ1)s

≥ κ

λ0 + λ1
log (1 + (λ0 + λ1)t) .

Similarly, if α(0) is in [1− ρ1 − η, 1] and α(t) stays in [1− ρ1 − η, 1], we have

α(t) ≤ 1−
∫ t

0

κds

1 + (λ0 + λ1)s

≤ 1− κ

λ0 + λ1
log (1 + (λ0 + λ1)t) .

We then de�ne

T1 =
1

λ0 + λ1
exp

(
max(α0 + η, ρ1 + η)(λ0 + λ1)

κ

)
and if α(0) ∈ [0, α0 + η] ∪ [1− ρ1 − η, 1] then α(T1) ∈ [α0 + η, 1− ρ1 − η]. Finally,
for all t ≥ T1, α(t) ∈ [α0 + η, 1− ρ1 − η].

Now, we know that α(t) will reach [α0 + η, 1 − ρ1 − η] in �nite time and
stay in that interval; we just have to study the behavior of F when α(0) is in
[α0 + η, 1 − ρ1 − η]. Using equations (3.14) and (3.15), we have that, if α(0) ∈
[α0 + η, 1− ρ1 − η], then, for all t ≥ 0,

Ḟ0(t) ≤ −µ0 (f(α0 + η)− ρ0) < 0,

Ḟ1(t) ≤ −µ1η

and the two components decrease at least linearly to 0 in �nite time. There exists
T2 such that for any �uid limit, for all t ≥ T2, F (t) = 0 and thus Z̄(t) = 0. �
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The dynamics of (F0(t), F1(t)) described in this proof is represented in Figure
3. Theorem 3.6 gives a su�cient condition for stability. The next theorem gives a
su�cient condition for transience. The arguments of the proof are very similar.

Theorem 3.7. Consider a linear network of L links of capacity 1. If there exists
k0 in {0, . . . , L} such that ρk0 > 1 or, if for all k in {0, . . . , L}, ρk < 1 and

ρ0 > sup
0≤x≤1−ρ1

φ̄0(x),

then the network is unstable, i.e., (N(t)) is transient.

Proof. In order to prove the transience of the process, we just have to prove that
there exists a time T such that after T , any �uid limit (Z̄(t)) increases linearly (see
[Mey95]).

We consider a �uid limit (Z̄(t)). If there is a k0 such that Z̄k0(0) > 0 then
Equations (3.2), (3.3) and (3.4) are valid. It is obvious that, if there exists k0 such
that ρk0 > 1 then (Z̄k(t)) increases linearly and the process (N(t)) is transient.

We suppose now that ρk < 1 for all k in {0, . . . , L}. In that case, there is a
time T0 such that, for all k in {2, . . . , L} and t ≥ T0, Z̄k(t) = 0. According to the
strong Markov property, we just have to study the �uid limits such that Z̄k(0) = 0
for 2 ≤ k ≤ L. In that case, Z̄k(t) = 0 for 2 ≤ k ≤ L and we just have to study the
dynamics of (Z̄0(t), Z̄1(t)).

We de�ne the following function

g(α) = sup
0≤x≤α

φ̄0(x).

This function is continuous, non-decreasing and, for any α in [0, 1] satis�es g(α) ≥
φ̄0(α). We also de�ne the process (G(t)) such that G(0) = Z̄(0) and

Ġ0(t) = λ0 − µ0g

(
G0(t)

G0(t) +G1(t)

)
,(3.18)

Ġ1(t) = λ1 − µ1
G0(t)

G0(t) +G1(t)
.(3.19)

As previously, we can prove that, for all t ≥ 0, G0(t) ≤ Z̄0(t) and G1(t) ≤ Z̄1(t).
So, we just have to prove that the process (G(t)) increases linearly to in�nity in
order to prove the transience of (N(t)).

We de�ne α0 = min{α ∈ [0, 1], g(α) = ρ0}. Since ρ0 > g(1 − ρ1), we have
α0 > 1− ρ1. De�ne α(t) = G0(t)/(G0(t) +G1(t)).

As in the proof of Theorem 3.6, we can show that there exists η > 0 such
that, for any initial state α(0), after some �nite time T1, α(t) reaches and stays in
[1− ρ1 + η, α0 − η]. We then just have to study the dynamics of G when α(0) is in
[1− ρ1 + η, α0 − η].

Using equations (3.18) and (3.19), we have that, if α(t) ∈ [1− ρ1 + η, α0 − η],
then

Ġ0(t) ≥ µ0 (ρ0 − g(α0 − η)) > 0,

Ġ1(t) ≥ µ1η.

Thus, for any initial conditions, for all t ≥ T1, G(t) increases linearly to in�nity
and the theorem is proved. �

The dynamics of (G0(t), G1(t)) described in this proof is represented in Figure
4. In particular, we can remark that when the network is unstable, there is always
a time after which both classes 0 and 1 of the �uid limit increase linearly to in�nity.
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Figure 4. Dynamics of (G0(t), G1(t))

Remark 3.8. The stability region of the network is not reduced to {0} since
inf1−ρ1≤x≤1 φ̄0(x) > 0 when ρ1 < 1 and it is strictly included in the optimal
stability region since sup0≤x≤1−ρ1 φ̄0(x) < mink(1− ρk).

Corollary 3.9. Consider a linear network with two links of capacity 1.
This network is stable if ρk < 1 for all 0 ≤ k ≤ 2 and ρ0 < φ̄0(1− ρ1).
This network is unstable if there exists k0 in {0, 1, 2} such that ρk0 > 1 or if

ρk < 1 for 0 ≤ k ≤ 2 and ρ0 > φ̄0(1− ρ1).

Proof. All that we have to prove is that the function φ̄0 is strictly increasing.
Consider the functions φ̃0, φ̃2, the processes (Ñα

2 (t)) and their stationary dis-
tribution π̃α as de�ned in Section 3.3. We assume that ρ2 < 1.

The process (Ñα
2 (t)) is one-dimensional and for α1 ≤ α2, for all n2, φ̃k(α1, n2) ≥

φ̃k(α2, n2). This implies (Ñα2
2 (t)) ≥st (Ñα1

2 (t)) and π̃α2 dominates π̃α1 .
For any α ∈ [0, 1] and any n2 ∈ N,

φ̃0(α, n2) + φ̃2(α, n2) = min(n2a2 + α, 1).

The function n2 7→ φ̃0(α, n2) + φ̃2(α, n2) is therefore non-decreasing.
Applying the de�nition of stochastic domination, we have

Eπ̃α1 (φ̃0(α1, .) + φ̃2(α1, .)) ≤ Eπ̃α2 (φ̃0(α1, .) + φ̃2(α1, .)).

For any n2 ∈ N, we have φ̃0(α2, n2) + φ̃2(α2, n2) ≥ φ̃0(α1, n2) + φ̃2(α1, n2).
Since α1 < α2 ≤ 1, we have φ0(α2, 0) > φ0(α1, 0) and we can conclude

Eπ̃α1 (φ̃0(α1, .) + φ̃2(α1, .)) < Eπ̃α2 (φ̃0(α2, .) + φ̃2(α2, .)).

Using the fact that Eπ̃α(φ̃2(α, .)) = ρ2, we can conclude that if α1 < α2, then
φ̄0(α1) < φ̄0(α2). �

4. Asymptotic Stability

From the results of the previous section, we know that ergodicity conditions in
general depend on the access rates ak. In this section, we qualify this dependence as
the access rates become asymptotically small. In the next subsection, we introduce
a scaling on the access rates in order to understand the qualitative behavior of
networks when the access rates become small. In subsection 4.2, we use this scaling
to determine the limit of φ̄0 when the access rates tend to 0 and then deduce that
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linear networks are asymptotically optimal. In subsection 4.3, we use the same
scaling to determine the asymptotic optimality of upstream trees. Subsections 4.2
and 4.3 are independent.

4.1. Scaling over the Access Rates and Flow Sizes. We �x all network pa-
rameters except the arrival rates, the mean size of �ows and the access rates. For
each β ∈ N, de�ne the process (Nβ(t)) describing the evolution of the number of
�ows in each class in a network where the access rate of each class k becomes ak/β,
the arrival rate becomes λkβ and the inverse of the mean size βµk.

In this proof and in the proof in the appendix, we will need the de�nition of an
increasing process of a martingale. If (M(t)) is a square-integrable martingale on R
null at 0, (〈M〉t) is the (essentially unique) increasing process such that (M2(t)−
〈M〉t) is a martingale. If (M(t)) and (N(t)) are two square-integrable martingales
on R null at 0, (〈M,N〉t) is the (essentially unique) increasing process such that
(M(t)N(t) − 〈M,N〉t) is a martingale. For more information on martingales and
increasing processes, see [RW79].

Theorem 4.1. Consider an acyclic network with L links and K classes.
If

lim
β→∞

1

β
a�Nβ(0) = X̄(0),

then (β−1a � Nβ(t)) converges in probability uniformly on compact sets to (X̄(t))
such that

(4.1) ˙̄Xk(t) = akλkt− akµkψk(X̄(t)), for 1 ≤ k ≤ K.

The convergence mentioned in this theorem is the uniform convergence in prob-
ability on compact sets for the space DRN+ ([0,∞)) with Skorohod topology (see
[Bil99]). The operator � denotes the componentwise product.

Proof. We de�ne the process (Mβ(t)) such that

(4.2) Mβ,k(t) = ak

(
Nβ,k(t)

β
− Nβ,k(0)

β
− λkt+ µk

∫ t

0

ψk

(
1

β
a�Nβ(s)

)
ds

)
,

for 1 ≤ k ≤ K. The martingale characterization (see [RW87]) of the Markov
jump process (β−1a�Nβ(t)) shows that (Mβ(t)) is a martingale and its increasing
processes are given by, for 1 ≤ k, l ≤ L and k 6= l,

〈Mβ,k〉t =
ak
β

(
λkt+ µk

∫ t

0

ψk

(
1

β
a�Nβ(s)

)
ds

)
,(4.3)

〈Mβ,k,Mβ,j〉t = 0.(4.4)

Since ψk is bounded by a constant C, we have 〈Mβ,k〉t ≤ ak(λk + Cµk)t/β, for
t ≥ 0.
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As (Mβ(t)) is a martingale, we can use Doob's inequality. For any t > 0 and
ε > 0,

P
(

sup
0≤s≤t

‖Mβ‖∞(s) ≥ ε
)
≤

K∑
k=1

P
(

sup
0≤s≤t

‖Mβ,k‖∞(s) ≥ ε
)

≤ K

ε2
max
k

E
(
Mβ,k

2(t)
)
,

≤ K

ε2
max
k
〈Mβ,k〉t,

≤ Kt

ε2β
max
k

ak(λk + Cµk).

Thus, (Mβ(t)) converges to 0 in probability uniformly on any compact when β →
+∞.

We now consider the random variable sup0≤s≤t
∥∥β−1a�Nβ(t)− X̄(t)

∥∥
∞ and

show that it converges in distribution to 0. De�ne Zβ(t) = β−1a � Nβ(t) − X̄(t).
Using (4.2),

Zβ,k(t) =
1

β
a�Nβ,k(0)− X̄k(0) +Mβ,k(t)

− µk
∫ t

0

(
ψk

(
1

β
a�Nβ(s)

)
− ψk(X̄(s))

)
ds, for 1 ≤ k ≤ K.

The ψk are all κ-Lipschitz for some κ > 0 and, for 1 ≤ k ≤ K,

sup
0≤s≤t

|Zβ,k(s)| ≤
∣∣∣∣akβ Nβ,k(0)− X̄k(0)

∣∣∣∣+ sup
0≤s≤t

|Mβ,k(s)|

+ κµk

∫ t

0

sup
0≤u≤s

|Zβ(u)|ds.
(4.5)

De�ne the function

fβ(t) = E
(

sup
0≤s≤t

‖Zβ(s)‖∞
)
.

Using Equations (4.5), (4.3) and (4.4), we deduce the inequality for all s < t,

fβ(s) ≤
∥∥∥∥ 1

β
a�Nβ(0)− X̄(0)

∥∥∥∥
∞

+
â

β

(
λ̂+ µ̂

)
s+ µ̂

∫ s

0

fβ(u) du

where â = maxk ak, λ̂ = maxk λk and µ̂ = maxk µk.
Applying Gronwall's lemma (see [Gro19]),

fβ(t) ≤
(∥∥∥∥ 1

β
a�Nβ(0)− X̄(0)

∥∥∥∥
∞

+
â

β

(
λ̂+ µ̂

)
t

)
eµ̂t.

Thus, fβ → 0 as β → +∞ and sup0≤s≤t

∥∥∥ 1
βa�Nβ(s)− X̄(s)

∥∥∥
∞

converges in

distribution to 0. In particular, for ε > 0,

lim
β→+∞

P
(

sup
0≤s≤t

∥∥∥∥ 1

β
a�Nβ(s)− X̄(s)

∥∥∥∥
∞
≥ ε
)

= 0.

Hence, (β−1a�Nβ(t)) converges to (X̄(t)) in probability uniformly on compact
sets. �
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The processes (β−1a�Nβ(t)) converge in distribution, as β tends to in�nity, to
a process (X̄(t)) which is completely deterministic. This process has a �xed point
if and only if there exists x ∈ RK+ such that

(4.6) λk − µkψk(x) = 0 for 1 ≤ k ≤ K.
Proposition 4.2. Consider an acyclic network with L links and K classes.

(X̄(t)) admits a unique �xed point if the optimal stability conditions (2.4) are
satis�ed: ∑

k:l∈rk

ρk < Cl for 1 ≤ l ≤ L.

Conversely, if there exists a link l0 such that∑
k:l0∈rk

ρk > Cl0

then (X̄(t)) does not admit a �xed point.

Proof. By de�nition of acyclic networks, we suppose that the links are numbered
in a such a way that the links on a route of any class are an increasing sequence.
By de�nition, any �xed point x = (x1, . . . , xK) satis�es

ψk(x) = ρk, for 1 ≤ k ≤ K.
We �rst suppose that the optimal stability conditions (2.4) are satis�ed. First,

note that if x = (x1, . . . , xK) satis�es the optimal stability conditions, then for all
k, ψk(x) = xk. The tra�c intensities (ρ1, . . . , ρK) are then a �xed point and this
is the only �xed point which statis�es the optimal stability conditions.

On the contrary, if x is such that there exists l0 with∑
k:l0∈rk

xk ≥ Cl0 ,

then, there exists l1 which is saturated i.e.∑
k:l1∈rk

θl1k (x) = Cl1 .

Since the network is acyclic, without loss of generality, we can assume that l1 is
such that, for all l > l1, link l is not saturated i.e.∑

k:l∈rk

θlk(x) < Cl.

In that case, for all class k such that l ∈ rk, we have ψk(x) = θl1k (x) and∑
k:l1∈rk

ψk(x) = Cl1

>
∑

k:l1∈rk

ρk.

The vector x cannot be a �xed point and the uniqueness of the �xed point is proved.
We now suppose that there exists a link l0 such that∑

k:l0∈rk

ρk > Cl0 .

In that case, it is enough to remark that, for all x = (x1, . . . , xK),∑
k:l0∈rk

ψk(x) ≤ Cl0

<
∑

k:l0∈rk

ρk.
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There is no �xed point. �

This proposition brings the intuition that the stability conditions for any acyclic
network can be arbitrarily close to the optimal ones if the access rates are small
enough. In the remainder of this section, we prove that this intuition is true in the
case of linear networks and upstream trees.

4.2. Asymptotic Stability of Linear Networks. We return here to the linear
networks discussed in Section 3. Theorems 3.6 and 3.7 show that stability conditions
depend on the function φ̄0 and consequently on stationary distributions (π̃α). In
order to characterize the ergodicity conditions, we have to study the evolution of
these distributions when the access rates decrease to 0.

Consider the process (Ñα
2:L(t)) introduced in Section 3.3 for α ∈ [0, 1] under

the scaling de�ned in Section 4.1. We call (Ñα
2:L,β(t)) the scaled process whose

transition rates are given by, for 2 ≤ k ≤ L,

nk → nk + 1 : βλk,

nk → nk − 1 : βµkψ̃k(n� β−1a)

where the functions ψ̃k are de�ned by Equation (3.6). We suppose that the ergod-
icity conditions of this process are ful�lled, i.e., ρk < 1 for 2 ≤ k ≤ L, and denote
by π̃αβ the stationary distribution of (β−1a2:L � Ñα

2:L,β(t)).

As in Section 4.1, when β tends to in�nity, the processes (β−1a2:L� Ñα
2:L,β(t))

converge in distribution to a deterministic limit that we call (X̄α(t)). This process
has a unique �xed point that we call γ(α) which is the solution of the following
equations:

λk − µkψ̃k(α, x2:L) = 0 for 2 ≤ k ≤ L.

Using the de�nition of ψ̃k, γ(α) can be built recursively yielding:

(4.7) γk(α) = max

(
ρk,

ρk
1− ρk

min

(
α, min

2≤j≤k−1
(1− ρj)

))
for 2 ≤ k ≤ L.

The next proposition states the convergence of the stationary distributions π̃αβ
to the Dirac measure at γ(α) for all α ∈ [0, 1] and the convergence of φ̄0.

Proposition 4.3. Consider a linear network with L links in the quasi stationary
regime. The set {π̃αβ , α ∈ [0, 1], β ∈ N} is tight. For any α ∈ [0, 1], the stationary
distribution (π̃αβ ) converges to δγ(α) when β → +∞.

If φ̄0,β is the function such that

(4.8) φ̄0,β(α) =

∫
RL−1

ψ̃0(α, x2:L)π̃αβ (dx2:L), for α ∈ [0, 1],

then φ̄0,β converges pointwise on [0, 1] to

(4.9) φ̄0,∞ : α 7→ min

(
α, min

2≤k≤L
(1− ρk)

)
, when β → +∞.

Moreover, for all α ∈ [0, 1],

lim
β→+∞

inf
α≤u≤1

φ̄0,β(u) = φ̄0,∞(α).

The tightness and the convergence mentioned in this proposition is the conver-
gence of probability distributions on RK−2

+ with the usual topology.
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Proof. First, we have to prove that the set {π̃αβ , α ∈ [0, 1], β ∈ N} is tight.
Note that for α ∈ [0, 1] and for k ≥ 2,

ψ̃k(α, βx2:L) ≥ nkak
β + nkak

.

De�ne the Markov processes (N̂2:L,β(t)) with transition rates:

nk → nk + 1 : λkβ,

nk → nk − 1 : µkβ
nkak

β + nkak
.

We assume that N̂2:L,β(0) = Ñα
2:L,β(0). We then have (β−1a2:L � N̂2:L,β(t)) ≥st

(β−1a2:L � Ñα
2:L,β(t)). In order to prove that the set {π̃αβ , α ∈ [0, 1], β ∈ N} is

relatively compact, it is enough to prove that {π̂β , β ∈ N} is tight where π̂β is the
invariant measure of (β−1a2:L � N̂2:L,β(t)). These are birth-death processes whose
components are independent. Their invariant measures thus have a product form
and it is su�cient to study the one-dimensional case:

π̂β(n2βa2) = (1− ρ2)βa
−1
2 +1ρn2

2

Γ
(
β
a2

+ 1 + n2

)
Γ
(
β
a2

+ 1
)
n2!

where Γ is the usual gamma function

Γ(z) =

∫ +∞

0

tz−1e−t dt, for z > 0.

π̂β is a negative binomial distribution and we have

π̂β([A,+∞[) =

∫ 1

ρ2
tβa
−1
2 (1− t)bβA/a2c dt∫ 1

0
tβa
−1
2 (1− t)bβA/a2c dt

.

Thus, if A > ρ2/(1− ρ2),

(4.10) lim
β→+∞

π̂β([A,+∞[) = 0.

Fix ε > 0 and A > ρ2/(1− ρ2). According to (4.10), there exists β0 ∈ N such that
for all β ≥ β0, π̂β([0, A]) ≥ 1− ε. Additionally, there exists a compact Γ1 ⊂ R such
that for β < β0, π̂β(Γ1) ≥ 1−ε. By choosing Γ = [0, A]∪Γ1, we have π̂β(Γ) ≥ 1−ε
for all β ∈ N and the set {π̂β , β ∈ N} is tight on R+ with the usual topology.
Finally, the set {π̃αβ , α ∈ [0, 1], β ∈ N} is tight and, thus, relatively compact.

We now prove the convergence of the invariant measures. The in�nitesimal
generator Ω̃αβ of (β−1a2:L � Ñα

2:L,β(t)) is de�ned by

Ω̃αβ(f)(x2:L) =

L∑
k=2

βλk

(
f

(
x2:L +

ak
β
ek

)
− f (x2:L)

)

+

L∑
k=2

βµkψ̃k(α, x2:L)

(
f

(
x2:L −

ak
β
ek

)
− f (x2:L)

)
.

The �in�nitesimal generator� Ω̄α of (X̄α(t)) is de�ned by

Ω̄α(f)(x2:L) =

L∑
k=2

λk
∂f

∂xk
(x2:L)−

L∑
k=2

µkψ̃k(α, x2:L)
∂f

∂xk
(x2:L).

Let f be a bounded smooth function with a bounded derivative. Since {π̃β , β ∈
]0, 1], α ∈ [0, 1]} is tight, for any ε > 0, there exists a compact set Γ ⊂ RK−2 such
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that for all β in N and α in [0, 1],

(4.11)
∫
RK−2

+ \Γ
f(x2:L)π̃αβ (dx2:L) ≤ ε.

Since f and its derivative are bounded and the ψ̃k are γ-Lipschitz for some γ,
there exists η such that for x in Γ,

(4.12) |Ω̃αβ(f)(x2:L)− Ω̄α(f)(x2:L)| ≤ η

β
.

The equilibrium equations give, for all α,

(4.13)
∫
RK−2

+

Ω̃αβ(f)(x2:L)π̃αβ (dx2:L) = 0.

Since {π̃αβ , β ∈ N, α ∈ [0, 1]} is relatively compact, we can extract a convergent
subsequence (π̃αiβi ) such that αi → α and βi → +∞. Thanks to relations (4.11),
(4.12), (4.13) and the continuity of f and its derivative, we can write that

lim
i→+∞

∫
RK−2

+

Ω̃αiβi (f)(x2:L)π̃αiβi (dx2:L) =

∫
RK−2

+

Ω̄α(f)(x2:L)π̄α(dx2:L).

Finally, (παiβ ) converges to π̄α when β → +∞.
The convergence pointwise of φ̄0,β follows by choosing αi = α.
Finally, for the last part of the proposition, we consider a sequence (αi, βi) such

that αi → α∞, βi → +∞ when i→∞ and, for all i, φ̄0,βi(ui) = infα≤u≤1 φ̄0,βi(u).
We have that

lim
i→∞

φ̄0,βi(αi) = φ̄0,∞(α∞).

By construction of αi, we also have

lim
i→∞

φ̄0,βi(αi) ≤ inf
α≤u≤1

φ̄0,∞(u).

Since φ̄0,0 is a non-decreasing function, its implies that

lim
i→∞

φ̄0,βi(αi) = φ̄0,∞(α).

�

We �nally deduce the following theorem which is a consequence of Theorem
3.6 and Proposition 4.3.

Theorem 4.4. In a linear network with L links, for any tra�c intensities satisfy-
ing the optimal stability conditions (3.1), if the access rates are small enough, the
resulting stochastic process is ergodic.

Proof. We consider the scaled version of the process introduced in Subsection 4.1
(Nβ(t)). According to Theorem 3.6, a su�cient condition of stability is

ρk < 1, for 0 ≤ k ≤ L,
ρ0 < inf

1−ρ1≤α≤1
φ̄0,β(α).

Since the tra�c intensities (ρ0, . . . , ρL) satisfy the optimal stability conditions (3.1),
there exists ε > 0 such that

ρk < 1, for 0 ≤ k ≤ L,
ρ0 < min

1≤k≤L
(1− ρk)− ε.

According to Proposition 4.3, there exists β0 such that for all β ≥ β0, we have

inf
1−ρ1≤α≤1

φ̄0,β(α) ≥ min
1≤k≤L

(1− ρk)− ε/2.
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This implies that, for all β ≥ β0, the process (Nβ(t)) is ergodic.
Finally, to conclude, it is enough to remark that the process with transition

rates

nk → nk + 1 : λk,

nk → nk − 1 : µkψk(n� β−1a)

admits the same stationary measures as (Nβ(t)) and is then ergodic if and only if
(Nβ(t)) is ergodic. �

This result means that the Tail Dropping policy is asymptotically optimal in
linear networks. Figures 5 and 6 represent the stability region for classes 0 and 1,
obtained by simulation, for two particular networks and illustrate this result.
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Figure 5. Stability region for classes 0 and 1 when L = 2 and ρ2 = 0.5
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Figure 6. Stability region for classes 0 and 1 when L = 4 and
ρ2, ρ3, ρ4 = 0.5

4.3. Asymptotic Stability of Upstream Trees. Upstream trees are a speci�c
class of networks because they are monotonic and this will allow us to use stochastic
domination to establish the asymptotic stability of upstream trees. Thanks to the
monotonicity, the worst case, in the sense of stochastic domination, for a given class
is when there is an in�nite number of �ows in all other classes. When the optimal
stability conditions are satis�ed, we can prove that there exists a class k0 which can
get enough bandwidth to be stable even if there is an in�nite number of �ows in all
other classes. Thanks to the same scaling that we used in subsections 4.1 and 4.2,
we are able to quantify the bandwidth used by the class k0 when the access rates
are decreasing to 0 and to prove that there exists a class k1 which is stable when
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the access rates are small enough even if there is an in�nite number of �ows in all
classes except k0 and k1. We conclude by using a recursion.

In upstream trees, when two di�erent classes go through the same link, they
share the same path until they exit the network. The last link on the path of all
classes is the same and it is called the root. Formally, upstream trees are de�ned
as follows:

(i): a common root link, say 1, so that rk(dk) = 1 for all classes k;

(ii): for any two classes j and k, there existsm such that they only have their
last m links in common; i.e, for i in {0, . . . ,m− 1}, rj(dj − i) = rk(dk− i)
and for ik in {0, . . . , dk −m} and ij in {0, . . . , dj −m}, rj(ij) 6= rk(ik).

Two examples of upstream trees are given in Figure 7. In [BFP09], two very
speci�c examples were shown not to be ergodic under optimal stability conditions
except when the access rates tend to 0. We generalize this result.

Figure 7. Examples of upstream trees

For any link l, let Sl denote the set of children of l, the links just before l on
the path of some class:

Sl =
{
j ∈ {1, . . . , L}, ∃k ∈ {1, . . . ,K}, ∃i, rk(i) = j, rk(i+ 1) = l

}
.

In particular, S1 is the set of links which are the links just before the root link on
the path of all classes with a route of length longer than 1.

We suppose that there are no two classes with exactly the same path. We also
suppose without loss of generality that all the links of the network can be saturated.
For any link l, this implies that there is a class kl directly entering in the network
through that link, i.e., rkl(1) = l or

∑
j∈Sl Cj > Cl. If a link l0 cannot be saturated

then the bandwidth allocation is the same with or without l0 and we can remove
it.

Upstream trees are monotonic in the sense that if n ∈ NK and m ∈ NK and
mk = nk for a given k and mj ≥ nj for j 6= k then φk(m) ≤ φk(n). Thanks to this
monotonicity property, the processes we study �t into the framework of [BJL08].
We suppose that the tra�c intensities satisfy the optimal stability conditions (2.4).

Because of the monotonicity of this network, we know that the worst case for
class k0 is when the numbers of �ows in all other classes increase to in�nity. We
de�ne the following allocation:

(4.14) ∀xk0 ∈ R+, ψ̆
1
k0(xk0) = lim

η→∞
inf

y:yk0=xk0 ,
k 6=k0,yk>η

ψk0(y)

and φ̆1
k0

is such that φ̆1
k0

(nk0) = ψ̆1
k0

(ak0nk0) for all nk0 ∈ N. We then de�ne the

Markov process (N̆1
k0

(t)) such that N̆1
k0

(0) = Nk0(0) with the transition rates

nk0 → nk0 + 1 : λk0 ,

nk0 → nk0 − 1 : µk0 φ̆
1
k0(nk0).

Because of the monotonicity of the considered allocations, we have that the process
(N̆1

k0
(t)) stochastically dominates (Nk0(t)) (see [BJL08]).
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In the sense of the stochastic domination, this process represents the worst case
for class k0. The next lemma shows that there is a class which is stable even in the
worst case.

Lemma 4.5. Consider an upstream tree and suppose the tra�c intensities of this
network satisfy the optimal stability conditions (2.4). There exists a class k0 such
that the Markov process (N̆1

k0
(t)) is ergodic.

Proof. Because of the monotonicity of the network all that we have to prove is
that there exists a class k0 such that

(4.15) lim
η→+∞

inf
n1≥η,...,nK≥η

φk0(n) > ρk0 .

If k0 satis�es (4.15) then there exists ε > 0 and η0 such that, for all nk0 ≥ η0,

λk0 − µk0 φ̆1
k0(nk0) ≤ −ε.

This implies the ergodicity of (N̆1
k0

(t)). We proceed by recursion on the depth of
the tree.

If the depth is 1 then there is a single class and a single link and condition
(4.15) is obviously true.

We suppose now that the depth of the tree is d ≥ 2. If there is a class k0 such
that rk0(1) = 1 then the root link is the entry point of k0 which is the only one
entering the network through 1. The worst case for class k0 is when all links in S1

are saturated; we have for all n ∈ NK ,

φk0(n) ≥ min

(
ak0nk0 , C1

ak0nk0∑
l∈S1

Cl + ak0nk0

)
.

Because the optimal conditions are satis�ed, we have ρk0 < C1 and there exist
δ > 0 and η0 such that for all n ∈ NK with nk0 ≥ η0, we have

φk0(n) ≥ ρk0 + δ

which is enough to conclude.
We now suppose that there is no class directly connected to the root, i.e. there

is no class k with a path of length 1. This implies that S1 is not empty. Since
the root link can be saturated, we have

∑
l∈S1

Cl > C1. Due to optimal stability
conditions, we have

K∑
k=1

ρk < C1

and we can deduce that there is a link l0 in S1 such that∑
k:rk(dk−1)=l0

ρk <
Cl0∑
j∈S1

Cj
C1.

Since the link l0 can be saturated, there is a constant η0 such that, if for any class
k going through l0 (i.e. satisfying rk(dk − 1) = l0), we have nk > η0, we have∑

k:rk(dk−1)=l0

θdk−1
k (n� a) = Cl0 .

Using the monotonicity of upstream trees, we can deduce that the worst case for
classes going through l0 is when all the other links in S1 are saturated. We deduce
immediately that when nk > η0 for all k going through l0, we have

φk(n) ≥ C1∑
j∈S1

Cj
θdk−1
k (n� a).
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It remains to consider the case where all the links in S1 are saturated corresponding
to the case of equality in the previous equation. With these conditions, the subtree
whose root link is l0 is equivalent to an upstream tree where the capacity of link l0
is replaced by C1Cl0/(

∑
j∈S1

Cj).
If there is a class k0 such that dk0 = l0 then, as previously, we have

lim
η→∞

inf
n:nk≥η

φk0(n) ≥ C1Cl0∑
j∈S1

Cj
> ρk0

and k0 satis�es (4.15).
If there is no class k0 such that dk0 = l0 then Sl0 is not empty and, as previously,

we can �nd l1 such that∑
k:rk(dk−2)=l1

ρk < Cl1
Cl0∑
j∈Sl0

Cj

C1∑
j∈S1

Cj
.

Using a recursion, we �nally �nd k0 satisfying (4.15). In addition, the links on
the path of k0 satisfy

(4.16) ∀i ∈ {1, . . . , dk0 − 1},
∑

k:rk0 (i)∈rk

ρk < Crk0 (i)

dk0∏
j=i+1

Crk0 (j)∑
l∈Srk0 (j)

Cl
.

�

We now perform the scaling of Section 4.1 on the process (N̆1
k0

(t)) and call

the scaled process (N̆1
k0,β

(t)). We deduce from the above lemma that the scaled
process is ergodic for all β ∈ N. For each β, we call π̆1

k0,β
the stationary distribution

of (β−1ak0N̆
1
k0,β

(t)). As in Section 4.1, the process (β−1ak0N̆
1
k0,β

(t)) converges in

probability uniformly on compact sets to a deterministic process (X̆1
k0

(t)). The
next lemma shows that there is also convergence for the stationary distribution.
The proof of this lemma is similar to that of Proposition 4.3 and is omitted. The
tightness and convergence in distribution mentioned in this lemma are on the space
R+ with its usual topology.

Lemma 4.6. Consider an upstream tree and suppose that the optimal stability con-
ditions (2.4) are satis�ed by the tra�c intensities. Consider k0 such that (N̆1

k0
(t))

is ergodic. The set {π̆1
k0,β

, β ∈ N} is tight and π̆1
k0,β

converges to δα1
k0

where α1
k0

is
the unique solution of the following equation

(4.17) λk0 − µk0 ψ̆1
k0(α1

k0) = 0.

The function ψ̆1
k0

is de�ned by Equation (4.14).

Now, we proceed by recursion. First, we give a class k1 which is also stable
when the access rates of classes k0 and k1 are small enough whatever the state of
other classes. For any classes k0 and k1, de�ne the following allocation

(4.18) ∀(xk0 , xk1) ∈ R2
+, ψ̆

2
k0(xk0 , xk1) = lim

η→∞
inf

y:yk0=xk0
yk1=xk1
k 6=ki,yk≥η

ψk0(x)

and ψ̆2
k1

is de�ned similarly. Now de�ne φ̆2
k0

and φ̆2
k1

such that φ̆2
ki

(nk0 , nk1) =

ψ̆2
ki

(ak0nk0 , nk1nk1) for all (nk0 , nk1) in N2. Let (N̆2
k0

(t), N̆2
k1

(t)) be the Markov
process with the transition rates for i = 0, 1:

nki → nki + 1 : λki ,

nki → nki − 1 : µki φ̆
2
ki(nk0 , nk1),
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and such that (N̆2
k0

(0), N̆2
k1

(0)) = (Nk0(0), Nk1(0)). Using the monotonicity of

the considered allocations, we know that the process (N̆2
k0

(t), N̆2
k1

(t)) stochastically

dominates (Nk0(t), Nk1(t)). Again, let (N̆2
k0,β

(t), N̆2
k1,β

(t)) denote the scaled version

of (N̆2
k0

(t), N̆2
k1

(t)).

Lemma 4.7. Consider an upstream tree and assume that the optimal stability condi-
tions (2.4) are satis�ed by the tra�c intensities of this tree. Consider k0 as de�ned
in Lemmas 4.5 and 4.6.

There exist k1 and β1 ∈ N such that, for all β ≥ β1, the Markov process
(N̆2

k0,β
(t), N̆2

k1,β
(t)) is ergodic. When β ≥ β1, the Markov process

(β−1ak0N̆
2
k0,β(t), β−1ak1N̆

2
k1,β(t))

has a unique stationary distribution that we denote by π̆2
k0,k1,β

. The set{
π̆2
k0,k1,β , β ∈ N

}
is tight and the stationary distribution π̆2

K0,k1,β
converges to δ(α2

k0
,α2
k1

) where (α2
k0
, α2

k1
)

is the unique solution of the equations

(4.19)

{
λk0 − µk0 ψ̆2

k0

(
α2
k0 , α

2
k1

)
= 0,

λk1 − µk1 ψ̆2
k1

(
α2
k0 , α

2
k1

)
= 0.

The functions ψ̆2
k0

and ψ̆2
k1

are de�ned by Equation (4.18).

The tightness and convergence in distribution mentioned in this lemma are on
the space R2

+ with its usual topology.

Proof. First, we prove that there exists k1 such that

(4.20) lim
xk1→∞

ψ̆2
k1(α1

k0 , xk1) > ρk1

where α1
k0

is the unique solution of (4.17).
For all i in {1, . . . , dk0}, We de�ne

τ̆ ik0 (xk0) = lim
η→∞

inf
y:yk0=xk0
k 6=k0,yk≥η

θik0(y).

Using Lemma 4.6, we can prove

σi = τ̆ ik0
(
α1
k0

)
= lim
β→+∞

Eπ̆1
k0,β

(
τ̆ ik0

(
β−1ak0N̆

1
k0,β

))
The quantity σi is the bandwidth used asymptotically by class k0 in link rk0(i)
when all the other classes are saturated and when the access rate ak0 decreases
to 0. We want to prove that when ak0 is small enough, class k0 leaves enough
bandwidth for other classes. First, we have the following result which states that
the optimal stability conditions are met by all classes except k0 when we remove
the bandwidth asymptotically used by class k0 in the saturated case:

∀i ∈ {1, . . . , dk0},
∑

k:rk0 (i)∈rk

ρk < Crk0 (i) − σi.

Indeed, for link 1, note that σdk0 = ρk0 because α1
k0

is the solution of Equation
(4.17) and the previous inequality is obviously true for link 1. If the route of k0 is
of length 1 the lemma is proved.
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Suppose that the route of k0 is at least of length 2. By construction of k0, there
is no class entering the network through rk0(i) for i in {2, . . . , dk0}. Since any link
can be saturated, this implies

∀i ∈ {2, . . . , dk0}, Crk0 (i) <
∑

l∈Srk0 (i)

Cl.

Moreover, we can prove that

∀i ∈ {1, . . . , dk0 − 1}, σi =

dk0∏
j=i+1

∑
l∈Srk0 (j)

Cl

Crk0 (j)
ρk0 .

Using these last two equations and Equation (4.16), we deduce

∀i ∈ {1, . . . , dk0 − 1},
∑

k:rk0 (i)∈rk

ρk < Crk0 (i) − σi.

Considering, for all k 6= k0, the allocation

(x0, . . . , xk0−1, xk0+1, . . . , xK) 7→ ψk
(
x0, . . . , α

1
k0 , . . . , xK

)
and using the same procedure used to �nd k0, we can �nd k1 such that

lim
η→∞

inf
k 6=k0xk≥η
xk0=α1

k0

ψk1(x) > ρk1

which is equivalent to Equation (4.20).
We are now able to prove that there exists β1 ∈ N such that for all β ≥ β1,

the Markov process (N̆2
k0,β

(t), N̆2
k1,β

(t)) is ergodic. By construction of (N̆1
k0,β

(t))

and (N̆2
k0,β

(t), N̆2
k1,β

(t)), according to Theorem 2 of [BJL08], we just have to prove
that there exists β1 ∈ N such that, for all β ≥ β1,

(4.21) ρk1 < Eπ̆1
k0,β

(
lim inf
xk1→∞

ψ̆2
k1

(
β−1ak0N̆

1
k0,β(0), xk1

))
.

We deduce from (4.20) that there exists b > α1
k0
, ς > 0 and η0 such that

(4.22) ∀xk0 ≤ b, ∀xk1 ≥ η0, ψ̆
2
k1 (xk0 , xk1) ≥ ρk1 + ς.

We know that π̆1
k0,β

converges to δα1
k0

when β → +∞. Thus, there exists β1 ∈ N,
such that, for all β ≥ β1,

(4.23) π̆1
k0,β ([b,∞[) ≤ ς

2(ρk1 + ς)
.

Finally, we have that, for all β ≥ β1, Equation (4.21) is satis�ed and the process
(N̆2

k0,β
(t), N̆2

k1,β
(t)) is ergodic.

We now prove tightness. By construction, we have (N̆1
k0,β

(t)) ≥st (N̆2
k0,β

(t))
and we deduce immediately that

(4.24) ∀c ∈ R, π̆2
k0,k1,β([c,∞[×R) ≤ π̆1

k0,β([c,∞[).

Moreover, according to Equations (4.22) and (4.23), for all β ≥ β1, there exists a
process (Yβ(t)) such that (Yβ(t)) ≥st (N̆2

k1,β
(t)) with the following transition rates

nk1 → nk1 + 1 : βλk1 ,

nk1 → nk1 + 1 : β
(
λk1 +

ς

3
µk1

)
1{Yβ(t)≥η0β}.



60 II. NETWORKS WITHOUT CONGESTION CONTROL

(Yβ(t)) has the transition rates of a M/M/1 queue with bη0βc permanent clients.
Let πY,β denote the stationary distribution of (β−1Yβ(t)) and we obtain immedi-
ately that

∀β ≥ β1, ∀η ≥ η0, πY,β([η,∞[) ≤
(

λk1
λk1 + ς

3µk1

)b(η−η0)βc

≤
(

λk1
λk1 + ς

3µk1

)b(η−η0)β1c

We deduce from the previous equation that

(4.25) ∀β ≥ β1, ∀η ≥ η0, π̆
2
k0,k1,β(R× [c,∞]) ≤

(
λk1

λk1 + ς
3µk1

)b(η−η0)β1c

The tightness of {π̆2
k0,k1,β

, β ≥ β1} follows from Equations (4.24) and (4.25)
and the tightness of {π̆1

k0,β
, β ∈ N}.

We can remark that existence and uniqueness of the solution of Equation (4.19)
are due to the monotonicity of (ψ̆2

k0
, ψ̆2

k1
) and from Equations (4.15) and (4.20).

The proof of convergence is similar to that used in the proof of Proposition
4.3. �

Using a recursion we can easily generalize the previous lemma. The principle
is still the same: little by little, we decrease the access rates and the classes become
stable one by one. In particular, there exists βK−1 ∈ N such that for all β ≥ βK−1,
the process (Nβ(t)) is ergodic where (Nβ(t)) is the scaled version of (N(t)). We
can therefore state the following.

Theorem 4.8. In an upstream tree, for any tra�c intensities satisfying the optimal
stability conditions (2.4), there exist positive access rates small enough such that
the resulting stochastic process is ergodic.

Appendix: Proof of Proposition 3.5

We �rst give a sketch of the proof. The technical details are proved in the
lemmas which follow.

We consider the process (N̄(m, t)) = ((N̄0(m, t), N̄1(m, t), . . . , N̄k(m, t))) such
that, for all 0 ≤ k ≤ L,

N̄k(m, 0) =
mk

‖m‖
and N̄k(m, t) =

1

‖m‖
Nk(‖m‖t), for t ≥ 0.

We consider a sequence (mi, i ∈ N) such that

(4.26)
lim

i→+∞
‖mi‖ = +∞, lim

i→+∞

mi
0

‖mi‖
= α,

lim
i→+∞

mi
1

‖mi‖
= 1− α, lim

i→+∞

mi
k

‖mi‖
= 0, for 2 ≤ k ≤ L.

We want to prove that the sequence of processes (N̄(mi, t)) converges and to char-
acterize the limit. For that purpose, we write them as the sum of a martingale term
and a continuous term and we de�ne the process (M̄(m, t)) such that for t ≥ 0 and
0 ≤ k ≤ L, we have

M̄k(m, t) =N̄k(m, t)− mk

‖m‖
− λkt

+ µk

∫ t

0

φk
(
N̄0(m, s), N̄1(m, s), N2(‖m‖s), . . . , NL(‖m‖s)

)
ds.

(4.27)
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Because the access rates a0 and a1 are equal to 1, we have

∀n ∈ NK , γ ∈ R, φk (γn0, γn1, n2, . . . , nL) = φk (n0, n1, n2, . . . , nL)

If a0 and a1 are not equal to 1, the previous expression is true outside a compact
set and it is possible to prove all the results in this section without this assumption
because, at a �uid level, the �rst link is always saturated.

In Lemma 4.9, we prove that the set

C =
{

(N̄(mi, t)), i ∈ N
}

is relatively compact and its limiting points are continuous. We can now extract a
converging subsequence and we suppose that (mi) is such that (N̄(mi, t)) converges
in distribution to a limit that we denote by (Z̄(t)) = (Z̄0(t), Z̄1(t), . . . , Z̄L(t)) and
which is continuous. In Lemma 4.10, we characterize (Z̄2(t), . . . , Z̄L(t)) by proving
that, for 2 ≤ k ≤ L and t ≥ 0, Z̄k(t) = 0.

Proposition 4.12 is the key result in order to understand the time scale sepa-
ration between classes 0 and 1 and classes 2, . . . , L. We deduce from this lemma
that (∫ t

0

φk
(
N̄0(mi, s), N̄1(mi, s), N2(‖mi‖s), . . . , NL(‖mi‖s)

)
ds, k = 0, 1

)
converges in distribution to(∫ t

0

φ̄0

(
Z̄0(s)

Z̄0(s) + Z̄1(s)

)
ds,

∫ t

0

Z̄1(s)

Z̄0(s) + Z̄1(s)
ds

)
where φ̄0 characterizes the average throughput of class 0 in the quasi-stationary
case as de�ned by Equation (3.7).

We can deduce from that and the fact that (M̄(mi, t)) converges to 0 in distri-
bution that (N̄0(mi, t), N̄1(mi, t)) converges in distribution to(

Z̄0(0) + λ0t− µ0

∫ t

0

φ̄0

(
Z̄0(s)

Z̄0(s) + Z̄1(s)

)
ds,

Z̄1(0) + λ1t− µ1

∫ t

0

Z̄1(s)

Z̄0(s) + Z̄1(s)
ds

)
and we conclude that, almost surely,

Z̄0(t) = Z̄0(0) + λ0t− µ0

∫ t

0

φ̄0

(
Z̄0(s)

Z̄1(s) + Z̄0(s)

)
ds,

Z̄1(t) = Z̄1(0) + λ1t− µ0

∫ t

0

Z̄1(s)

Z̄1(s) + Z̄0(s)
ds,

Z̄k(t) = 0, for 2 ≤ k ≤ L

holds for all t in R+.

Lemma 4.9.

C =
{

(N̄(mi, t)), i ∈ N
}

is relatively compact and its limiting points are continuous processes.

Proof. The method used here is also standard. We de�ne wh as the modulus of
continuity for any function h de�ned on [0, T ]:

wh(δ) = sup
s,t≤T ; |t−s|<δ

|h(s)− h(t)|.
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As in the proof of Theorem 4.1, we can prove that (M̄(m, t)) is a martingale
and its increasing processes are given by, for 0 ≤ k, l ≤ K with k 6= l,

〈M̄k(m, t)〉 =
λkt

‖m‖
+
µkt

‖m‖

∫ t

0

φk(N̄0(m, s), N̄1(m, s), N2(‖m‖s), . . . , NL(‖m‖s)) ds,

〈M̄k(m, t), M̄l(m, t)〉 = 0.

Since the functions φk are bounded by 1, we deduce that

〈M̄k(m, t)〉 ≤ (λk + µk)t

‖m‖
.

By using Doob's inequality, we have that, for ε > 0,

P
(

sup
0≤s≤t

‖M̄(m, s)‖ ≥ ε
)
≤

L∑
k=0

P
(

sup
0≤s≤t

|M̄k(m, s)| ≥ ε

L

)
,

≤
L2t

∑L
k=0 λk + µk
ε2‖m‖

We deduce that if (mi) is a sequence satisfying Equation (4.26) then (M̄(mi, t))
converges in probability to 0 uniformly on compact sets when i tends to in�nity;
for any T ≤ 0 and any ε > 0,

lim
i→∞

P
(

sup
0≤t≤T

‖M̄(mi, t)‖ ≥ ε
)

= 0.

Using Equation (4.27) and the previous equation, we can prove that for any
ε > 0 and η > 0, there exist δ > 0 and A such that for all i ≥ A,

P
(
wN̄k(mi,.)(δ) > η

)
≤ ε.

The conditions of [Bil99, 7.2 p81] are then ful�lled and the set C is relatively
compact and its limiting points are continuous processes. �

We are now able to characterize (Z̄2, . . . , Z̄L(t)).

Lemma 4.10. We consider a sequence (mi) satisfying Equation (4.26) and such
that (N(mi, t)) converges in distribution to (Z̄(t)). Then the process (Z̄(t)) satis�es
Z̄k(t) = 0 for 2 ≤ k ≤ L and t ≥ 0.

Proof. De�ne the process (N̂2:L(t)) with the following transition rates for 2 ≤
k ≤ L:

nk 7→ nk + 1 : λk,

nk 7→ nk − 1 : µk
nkak

1 + nkak
.

and such that N̂2:L(0) ≥ Ñα
2:L(0). Clearly, (N̂2:L(t)) is ergodic and stochastically

dominates (N2:L(t). Moreover, the components evolve independently. If we call
(Ẑ2:L(t)) a �uid limit of (N̂2:L(t)), we can prove, as in [Rob03, Prop 5.16 p125],
that it satis�es

Ẑk(t) = (Ẑk(0) + (λk − µk)t)+, for t ≥ 0 and 2 ≤ k ≤ L.

Moreover, by stochastic domination, we have Z̄k(t) ≤ Ẑk(t) for all t ≥ 0 and
2 ≤ k ≤ L. Since (mi) satis�es Equation (4.26), we have that Z̄k(0) = 0, for
2 ≤ k ≤ L and we conclude that Z̄k(t) = 0 for all t ≥ 0 and 2 ≤ k ≤ L. �
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We de�ne N̄ = N ∪ {+∞} and we consider N̄K−2. We endow N̄K−2 with
the metric induced from the L1-norm on RK−2 by the mapping (x2, . . . , xL) 7→
(1/(x2 + 1), . . . , 1/(xL + 1)). We can note that, in particular, N̄K−2 is compact.
In the same way as in [HK94], we then de�ne a family of random measures on
[0,∞)× N̄K−2, for any m ∈ N2, any Γ ⊂ N̄K−2 and t ≥ 0,

νm((0, t)× Γ) =

∫ t

0

1{(N2(‖m‖s),...,NL(‖m‖s))∈Γ} ds.

We then consider L0(N̄K−2), the set of measures γ de�ned on [0, t] × N̄K−2 and
such that γ([0, t) × N̄K−2) = t for all t ≥ 0. Under the topology induced by weak
convergence on every compact and since N̄K−2 is compact, L0(N̄K−2) is compact.
The next lemma shows that a random measure in L0(N̄K−2) can be expressed as
the sum of probability measures of N̄K−2 indexed by s in R+.

Lemma 4.11. We consider a sequence (mi, i ∈ N) satisfying Equation (4.26). The
set {

((N̄(mi, t)), νmi), i ∈ N
}

is relatively compact. If ((Z̄(t)), ν) is a limit process then there exists a process ϑ
such that for all t, ϑ(t, .) is a random probability measure on N̄K−2 and

∀t ≥ 0, ∀Γ ⊂ N̄K−2, ν([0, t)× Γ) =

∫ t

0

ϑ(s,Γ) ds.

Proof. One can �nd a related result in a slightly di�erent context in [Kur92] and
[HK94].

In order to prove the relative compactness of
{

((N̄(mi, t)), νmi)
}
, we just need

to prove that
{

(N̄(mi, t)), i ∈ N
}
and {νmi , i ∈ N} are relatively compact. We have

already proved the relative compactness of the �rst one in lemma 4.9. L0(N̄K−2)
is compact then the second one is relatively compact.

We consider a convergent sequence ((N̄(mi, t)), νmi) and its limiting process
(Z̄(t), ν). Let (Ω,F ,P) be the probability space on which they are de�ned. We call
{Ft} the natural �ltration of (Z̄(t), ν).

We then de�ne γ such that

∀B ∈ F , ∀C ∈ B([0,∞))⊗ B(N̄K−2) γ(B × C) = E(1{B}ν(C)).

According to [EK86, appendix 8], γ can be extended to a measure on F ⊗
B([0,∞)) ⊗ B(N̄K−2) and there exists ϑ such that for all t, ϑ(t, .) is a random
probability measure on N̄K−2 and for any B ∈ B(N̄K−2), (ϑ(t, B), t ≥ 0) is {Ft}-
adapted and for any C ∈ F ⊗ B([0,∞)),

γ(C ×B) = E
(∫ +∞

0

1{C}(s)ϑ(s,B) ds

)
.

We de�ne

MB(t) = ν([0, t]×B)−
∫ t

0

ϑ(s,B) ds.

(MB(t)) is {Ft}-adapted and continuous. We considerD ∈ Ft. We de�ne 1{C}(ω, s) =
1{D}(ω)1{[t,+∞)}(s) and we have

E
(
1{D}ν([t,+∞)×B)

)
= γ(C ×B),

= E
(
1{D}

∫ +∞

t

ϑ(s,B) ds

)
.

It follows that

E (ν([t,+∞)×B)|Ft) = E
(∫ +∞

t

ϑ(s,B) ds|Ft
)
.
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Then, (MB(t)) is a continuous {Ft}-martingale. It has �nite sample paths and then
is almost surely identically null. Almost surely, the following equation holds for all
t,

∀B ⊂ N̄K−2, ν([0, t)×B) =

∫ t

0

ϑ(s,B) ds.

�

The previous lemma gives a convenient way to express the integral of linear
combinations of indicator functions against a limit measure of (νm). We will use
this technical lemma in the next one to characterize the limit of (νm). This is the
most important part of the theorem and we prove the time scale separation between
classes 0 and 1 and 2, . . . , L here.

Proposition 4.12. We consider a sequence (mi, i ∈ N) satisfying Equation (4.26)
and such that ((N̄(mi, t)), νmi) is a converging sequence and h a continuous function
on [0, 1]2 × N̄K−2. Then, we have that(∫ t

0

h(N̄0(mi, s), N̄1(mi, s), N2(‖mi‖s), . . . , NL(‖mi‖s)) ds

)
converges in distribution to∫ t

0

∑
y∈N̄K−2

h
(
Z̄0(s), Z̄1(s), y

)
π̃α(s)(y) ds


with

∀t ∈ R+, α(t) =
Z̄0(t)

Z̄0(t) + Z̄1(t)

and where, π̃α(t) is the stationary distribution of the process (Ñ
α(t)
2:L (s)) de�ned in

Section 3.3.
In particular, the function

(x0, x1, n2, . . . , nL) 7→ ψ0(x0, x1, n2a2, . . . , nLaL)

is continuous on [0, 1]2 × N̄K−2 and(∫ t

0

φ0(N̄0(mi, s), N̄1(mi, s), N2(‖mi‖s), . . . , NL(‖mi‖s)) ds

)
converges in distribution to (∫ t

0

φ̄0 (α(s)) ds

)

Proof. The functions which are continuous on [0, 1]2 × N̄K−2 for the topology
induced by the natural topology on [0, 1]2 and the topology induced by the mapping
(x2, . . . , xL) 7→ (1/(x2 + 1), . . . , 1/(xL + 1)) are the bounded functions h which
are continuous on [0, 1]2 × NK−2 for the natural topology and such that for each
x ∈ [0, 1]2, y 7→ h(x, y) admits a unique limit h(x,∞) in all directions such that
‖y‖ → ∞ and the function x 7→ h(x,∞) has to be continuous on [0, 1]2. We can
remark that, for all (x0, x1) ∈ [0, 1]2 ψ0(x0, x1, n2:L�a2:L)→ 0 when ‖n2:L‖ → +∞
and the function

(x0, x1, n2, . . . , nL) 7→ ψ0(x0, x1, n2a2, . . . , nLaL)

is then continuous on [0, 1]2 × N̄K−2.
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We consider h a continuous function on [0, 1]2× N̄K−2, since the space [0, 1]2×
N̄K−2 is compact, Lemma 4.11 implies directly that(∫ t

0

h(N̄0(mi, s), N̄1(mi, s), N2(‖mi‖s), . . . , NL(‖mi‖s)) ds

)
converges in distribution to∫ t

0

∑
y∈N̄K−2

h
(
Z̄0(s), Z̄1(s), y

)
ϑ(s, y) ds

 .

We are now able to fully characterize the random measures (ϑ(., t)). For any
continuous bounded function f on N̄K−2 and any m ∈ NK−2, we de�ne,

M̄f (m, t) =
1

‖m‖

(
f(N2(‖m‖t), . . . , NL(‖m‖t))− f(0)

)
−

L∑
k=2

λk

∫ t

0

(
f((N2(‖m‖s), . . . , NL(‖m‖s)) + ek)

− f(N2(‖m‖s), . . . , NL(‖m‖s))
)

ds

−
L∑
k=2

µk

∫ t

0

((
f((N2(‖m‖s), . . . , NL(‖m‖s))− ek)

− f(N2(‖m‖s), . . . , NL(‖m‖s))
)

φk(N̄0(m, s), N̄1(m, s), N2(‖m‖s), . . . , NL(‖m‖s))
)

ds.

As (M̄(m, t)) de�ned by equation (4.27) is a martingale, (M̄f (m, t)) is a mar-
tingale. We consider a convergent sequence ((N̄(mi, t)), νmi). We have that the
sequence (M̄f (mi, t)) converges in distribution to 0. This in turn implies that
‖mi‖−1(f(N2(‖mi‖t), . . . , NL(‖mi‖t)) − f(0)) also converges to 0 because f is
bounded. As a consequence, the following term

L∑
k=2

λk

∫ t

0

(
f((N2(‖mi‖s), . . . , NL(‖mi‖s)) + ek)

− f(N2(‖mi‖s), . . . , NL(‖mi‖s))
)

ds

−
L∑
k=2

µk

∫ t

0

((
f((N2(‖mi‖s), . . . , NL(‖mi‖s))− ek)

− f(N2(‖mi‖s), . . . , NL(‖mi‖s))
)

φk(N̄0(mi, s), N̄1(mi, s), N2(‖mi‖s), . . . , NL(‖mi‖s))
)

ds

also converges in distribution to 0. But, by the continuous mapping theorem and
Lemma 4.11, it converges in distribution to∫ t

0

L∑
k=2

(
λk

∑
y∈N̄K−2

f(y + ek)− f(y)

+ µk
∑

y∈N̄K−2

(f(y − ek)− f(y))ϕk(Z̄0(s), Z̄1(s), y)

)
ϑ(s, y) ds.
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Consequently, this is null almost surely for all t and we have then, for Lebesgue-
almost every t,

L∑
k=2

(
λk

∑
y∈N̄K−2

f(y + ek)− f(y)+

µk
∑

y∈N̄K−2

(f(y − ek)− f(y))ϕk(Z̄0(t), Z̄1(t), y)

)
ϑ(t, y) = 0.

We deduce immediately that∫
NK−2

Ω̃α(t)(f)(y)ϑ(t, dy) = 0

where α(t) = Z̄0(t)/(Z̄0(t) + Z̄1(t)) and Ω̃α(t) is the in�nitesimal generator of
(Ñ

α(t)
2:L (s)), de�ned in Section 3.3. This proves exactly that ϑ(t, .) is invariant for

(Ñ
α(t)
2:L (s)). By uniqueness of the invariant distribution of such a process, we have

that

ϑ(t, .) = π̃α(t).

�
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1. Introduction

The CSMA (Carrier Sense Multiple Access) algorithm is a key component of
IEEE 802.11 networks. While it proves successful in sharing a single radio channel
between a limited number of stations, its e�ciency is questionable in more involved
environments with multiple radio channels and a large number of stations having
di�erent interference constraints. In this chapter, we analyze the ability of CSMA
to fully utilize the radio resources in such environments, in both ad-hoc and in-
frastructure modes, accounting for the random nature of tra�c. Speci�cally, each
station attempts to access a randomly chosen radio channel after some random
backo� time and transmits a packet over this channel if it is sensed idle. We study
the random variations of the number of active wireless links induced by this ran-
dom access algorithm and the random activity of users. In particular, we analyze
the ergodicity of the associated Markov process, which characterizes the ability of
CSMA to stabilize the network.

It turns out that, while CSMA is always e�cient in ad-hoc mode, in the sense
that the network is stable whenever possible, it is generally ine�cient in infrastruc-
ture mode, when all data �ows originate from or are destined to some �nite set of
access points. This is due to the fact that, in ad-hoc mode, each new �ow adds a
new link to the network, which competes fairly with other links for accessing the
radio channels. In infrastructure mode, each access point attempts to access the
radio channels at some constant rate, independently of the number of uplink �ows
(from the stations) and downlink �ows (to the stations) at this access point. This
inherent bias against access points results in some loss of capacity in the sense that
the network may be unstable at load strictly less than 1. We prove that a slight
modi�cation of CSMA, which consists in running one instance of CSMA per �ow
at each access point, corrects this bias and makes the algorithm optimal. We refer
to this algorithm, introduced in [BF10], as �ow-aware CSMA.

69
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The rest of the chapter is organized as follows. We present some related work
in the next section. The network model in ad-hoc mode is described in section 3.
Sections 4 and 5 are devoted to the packet- and �ow-level dynamics, respectively,
assuming time-scale separation. The main result of the chapter, given in Theorem
5.1, shows in particular the optimality of CSMA in ad-hoc mode. The validity of
the time-scale separation assumption is discussed in section 6. The infrastructure
mode is considered in section 7, where we prove the suboptimality of standard
CSMA and the optimality of �ow-aware CSMA. Section 8 concludes the chapter.

2. Related Work

The present work is related to the problem of throughput-optimal scheduling
in wireless networks. A centralized solution is known since the seminal work of
Tassiulas and Ephremides, who proved in [TE92] the optimality of the maximum
weight policy. A number of distributed implementations of this policy have then
been proposed, all relying on some message passing protocol between stations, see
e.g. [MSZ06]. It is only recently that fully distributed solutions without message
passing have been found. Jiang and Walrand introduced in [JW08] a distributed
CSMA algorithm where the rate at which each link attempts to access the radio
channel is adapted to the packet arrival rate and departure rate at this link, so
as to meet the demand. This approach is based on a time-scale separation as-
sumption whereby the attempt rates elvolve at a much slower timescale than the
packet arrivals and departures. This assumption turns out to be critical and the
algorithm must actually be carefully designed in order to guarantee convergence
and throughput-optimality [PYLC10, JSSW10]. Another approach that does
not rely on the time-scale separation assumption was proposed independently by
Rajagopalan, Shah and Shin [RS08, RSS09]. In their algorithm, the attempt rate
of each station is some slowly varying function of the queue size, which essentially
enforces the time-scale separation. The proof of optimality then relies on the fact
that this adaptive version of CSMA asymptotically achieves some form of maximum
weight scheduling. Similar ideas are used by Ni, Tan and Srikant in [NTS10].

All these papers focus on the packet-level dynamics, assuming packets are
generated by some �xed number of �ows over some �xed set of links. The �ow-
level dynamics are ignored, whereas they are known to be critical, see for instance
[BTI+03, BBP+01, BK00, MR00] in the context of wireline networks. A �ow-
level model using adaptive CSMA is considered by Shah and Shin [SS11]. This
model is very di�erent from ours in that it applies to optical networks and, in par-
ticular, does not involve any packet-level dynamics: a �ow that is allocated a circuit
in the network uses this circuit until the completion of its service requirement. As
in [BF10], we consider both the packet-level and �ow-level dynamics, under the
usual assumption that the former are much faster than the latter. Speci�cally, we
extend the results of [BF10] to multi-channel wireless networks in both ad-hoc and
infrastructure modes, accounting for the dynamic nature of the network topology.

Surprisingly, little attention has been paid so far to multi-channel networks.
A notable exception is the adaptive, multi-channel version of CSMA introduced in
[PYLC10], which is shown to maximize the network utility when combined with
some appropriate virtual queue mechanism. We here prove the optimality of CSMA
in the sense of �ow-level stability for a very general model where the interference
constraints may depend on the considered channel and each transmitter may only
use a subset of the channels. Speci�cally, we show that it is su�cient for each
transmitter to probe one of its channels at random, without any further information
on the network state.
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Another salient feature is the observation of the key di�erence between the
ad-hoc and infrastructure modes. In the former, the number of transmitters grows
with the congestion, which increases the channel attempt rate and in turn stabilizes
the network. This is not the case in the latter since the channel access opportunities
of each access point must be shared by all downlink �ows at this access point. This
inherent bias of CSMA against downlink tra�c is well known, see e.g. [HRBSD03,
KKF05], and can be easily corrected by letting the attempt rate of each access
point depend on the number of downlink �ows, a scheme we refer to as �ow-aware
CSMA [BF10]. It is worth noting that this algorithm does not depend on the
queue length (number of packets) but on the queue width (number of �ows). As
such, the nature of the algorithm and the signi�cance of the underlying time-scale
separation assumption (packet-level vs. �ow-level dynamics) are very di�erent from
those considered so far, based on packet-level models [JW08, PYLC10, JSSW10,
BBLP11].

3. Model

3.1. A Multi-Channel Wireless Network. The network consists of a random,
dynamic set of wireless links in ad-hoc mode (there is no access point at this stage).
These links must share some �nite number J of non-interfering radio channels.
Each link consists of a transmitter-receiver pair; the transmitter is able to use
at most one radio channel at a time. We group links into a �nite number of K
classes, as illustrated by Figure 1. All links within the same class have the same
radio conditions, the same interference constraints and the same CSMA parameters.
We denote by xk the number of class-k links and by x the corresponding vector,
which we refer to as the network state. Two links within the same class cannot
be simultaneously active on the same channel. An active class-k link on channel j
transmits data at the physical rate ϕk bit/s, independently of j. We say that class
k is active on channel j if there is an active class-k link on channel j.

1

2

3

4

Figure 1. An ad-hoc wireless network with 4 classes of links and
its interference graph.

Each channel j is associated with some con�ict graph Gj = (Vj , Ej), where
Vj ⊂ {1, . . . ,K} is the set of classes that are able to transmit on channel j and Ej
is the set of edges, each representing a con�ict. Speci�cally, two classes k, l ∈ Vj
can be simultaneously active on channel j if and only if they do not con�ict with
each other, that is if (k, l) 6∈ Ej . The J con�ict graphs are typically the same but
could di�er due to di�erent radio propagation environments on the J channels, or
to di�erent transmission capabilities of the K classes.

3.2. Feasible Schedules. We refer to a schedule as any vector y ∈ {0, 1}K×J ,
where ykj = 1 if class k is active on channel j. We denote by yk the number of
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active class-k links:

yk =

J∑
j=1

ykj .

The schedule is feasible if for all j = 1, . . . , J , the active classes on channel j belong
to Vj and do not con�ict with each other, that is ykjylj = 0 for all (k, l) ∈ Ej .
Moreover, we must have:

(3.1) ∀k = 1, . . . ,K, yk ≤ xk.
We denote by Y(x) the set of feasible schedules. Note that if xk ≥ J for all k =
1, . . . ,K, the constraint (3.1) is no longer limiting (since the number of active class-
k links is limited by the number of radio channels J) and the set of feasible schedules
becomes independent of the network state. We denote by Y the corresponding set,
which is the union of Y(x) over all network states x.

3.3. Capacity Region. Assume that each feasible schedule y is selected with
probability π(y), with

∑
y∈Y π(y) = 1. The mean throughput of class k is then

given by:

(3.2) φk = ϕk
∑
y∈Y

ykπ(y).

Let φ be the corresponding throughput vector. We refer to the capacity region
as the set of vectors φ generated by all probability measures π(y), y ∈ Y. Note
that the capacity region depends both on the physical rates and on the interference
constraints of all wireless links.

4. Packet-Level Dynamics

We �rst analyze the packet-level dynamics induced by CSMA for a static net-
work state x. The �ow-level dynamics that make x vary are introduced in section
5.

4.1. Random Access. We consider the standard CSMA algorithm where each
transmitter waits for a period of random duration referred to as the backo� time
before each transmission attempt. At each attempt, the transmitter chooses a radio
channel at random and probes it. If the radio channel is sensed idle (in the sense
that no con�icting link is active), a packet is transmitted; otherwise, the transmitter
waits for a new backo� time before the next attempt.

Packets have random sizes of unit mean and are transmitted at the physical rate
ϕk on class-k links; the backo� times of class-k transmitters are random with mean
1/νk , where νk > 0 is the corresponding attempt rate. We denote by αk = νk/ϕk
the ratio of the mean packet transmission time to the mean backo� time of class-k
links. Channel j is chosen with probability βkj , with

∑J
j=1 βkj = 1 and βkj > 0

if and only if k ∈ Vj , so that all accessible channels are attempted with positive
probability.

4.2. Stationary Distribution. Let (Y (t)) be the schedule selected by the above
random access algorithm at time t. We look for the stationary distribution of (Y (t)),
which we denote by π(x, y) to highlight the fact that it depends on the network
state x. We have:

Proposition 4.1. If both the packet sizes and the backo� times have exponential
distributions, then (Y (t)) is a reversible Markov process, with stationary measure:

(4.1) w(x, y) =
∏

k:xk>0

xk!

(xk − yk)!
αykk

J∏
j=1

β
ykj
kj , y ∈ Y(x).
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Proof. Let ekj be the unit vector on component k, j on {0, 1}K×J . The Markov
process (Y (t)) jumps from state y to state y + ekj with rate (xk − yk)νkβkj (since
all idle links attempt to access the channel) and from state y + ekj to state y with
rate ϕk (since all class-k links have the same physical rate ϕk, independently of the
used channel), for any state y such that y + ekj ∈ Y(x). The proof then follows
from the local balance equations:

w(x, y)(xk − yk)νkβkj = w(x, y + ekj)ϕk.

�

The stationary distribution π(x, y) follows from the normalization of the sta-
tionary measure w(x, y) over all y ∈ Y(x). We deduce the mean throughput of class
k in state x:

(4.2) φk(x) = ϕk
∑
y∈Y

ykπ(x, y).

It turns out that, by the insensitivity property of the underlying loss network
[Bon07], these expressions are in fact valid for any phase-type distributions of
packet sizes and backo� times; such distributions are known to form a dense subset
within the set of all distributions with real, non-negative support [Ser99], so that
the results hold for virtually any distributions of packet sizes and backo� times. We
refer the reader to [vdVBvLP10] for further details on this insensitivity property.

5. Flow-Level Dynamics

We now introduce the �ow-level dynamics under the assumption of in�nitely
fast packet-level dynamics; the validity of this time-scale separation assumption is
discussed in section 6.

5.1. Tra�c Characteristics. We assume that �ows using class-k links are gen-
erated according to a Poisson process of intensity λk. Each such �ow has an ex-
ponential size with mean σk bits and leaves the network once the corresponding
data transfer is completed. There is a one-to-one correspondence between �ows
and links so that both terms are used interchangeably in the following. We denote
by ρk = λkσk the tra�c intensity of class k (in bit/s) and by ρ the corresponding
vector.

Under the time-scale separation assumption, the �ow-level dynamics are much
slower than the packet-level dynamics so that, at the time scale of a �ow, everything
happens as if the stationary distribution (4.1) of the packet-level dynamics were
reached instantaneously. In particular, the mean throughput of class k is given by
(4.2) in state x.

5.2. Stability Region. Let Xk(t) be the number of class-k �ows at time t. The
corresponding vector (X(t)) describes the evolution of the network state. This is a
Markov process with transition rates λk from state x to state x+ ek and φk(x)/σk
from state x to state x− ek (provided xk > 0), where ek denotes the unit vector on
component k.

We say that the network is stable if this Markov process is ergodic. Clearly,
a necessary condition for stability is that the vector of tra�c intensities ρ lies in
the capacity region. The following key result shows that this condition is in fact
su�cient, up to the critical case where ρ lies on the boundary of the capacity region.
In this sense, CSMA is optimal in the considered ad-hoc mode.

Theorem 5.1. The network is stable for all vectors of tra�c intensities ρ in the
interior of the capacity region.
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The proof is based on the fact that the random access algorithm selects sched-
ules in proportion to their weights (4.1). For large x, this is equivalent to selecting
schedules in proportion to the following uniform weight, which is independent of
the channel probing distribution:

(5.1) u(x, y) =
∏

k:xk>0

(xkαk)yk , y ∈ Y(x).

De�ning:
u(x) = max

y∈Y(x)
u(x, y),

the following result shows that those schedules of maximum weight are actually
selected with probability close to 1:

Lemma 5.2. For any ε > 0, we have:∑
y∈Y(x)

π(x, y) log(u(x, y)) ≥ (1− ε) log(u(x))

for all states x but some �nite number.

Proof. For any class k, let:
βk = min

j:k∈Vj
βkj .

Note that βk > 0. We have for all y ∈ Y(x):

w(x, y) ≥
∏

k:xk>0

xk(xk − 1) . . . (xk − yk + 1)

xykk
βJk u(x, y).

If xk ≤ 2J , we have:

xk(xk − 1) . . . (xk − yk + 1)

xykk
≥ 1

xykk
≥ 1

(2J)J
.

Otherwise, we have using the fact that yk ≤ J for all k = 1, . . . ,K:

xk(xk − 1) . . . (xk − yk + 1)

xykk
≥
(
xk − yk + 1

xk

)yk
≥ 1

2J
.

Combining these results, we obtain the existence of some constant m > 0 such that:

∀y ∈ Y(x), w(x, y) ≥ mu(x, y).

Now let:

Z(x) =
{
y ∈ Y(x) : log(u(x, y)) ≥ (1− ε

2
) log(u(x))

}
.

We have: ∑
y∈Z(x)

π(x, y) log(u(x, y)) ≥ (1− ε

2
) log(u(x))

∑
y∈Z(x)

π(x, y).

Using the fact that w(x, y) ≤ u(x, y) for all y ∈ Y(x), we get:∑
y∈Y(x)\Z(x)

π(x, y) =

∑
y∈Y(x)\Z(x) w(x, y)∑

y∈Y(x) w(x, y)
,

≤ 1

m

∑
y∈Y(x)\Z(x) u(x, y)∑

y∈Y(x) u(x, y)
,

≤ 1

m

Mu(x)1− ε2

maxy∈Y(x) u(x, y)
,

=
1

m

M

u(x)
ε
2
,
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whereM denotes the total number of schedules (that is, the cardinality of Y). Since
u(x) tends to +∞ when |x| ≡

∑
k xk tends to +∞, this quantity is less than ε/2

for all states x but some �nite number. In those states, we have:∑
y∈Z(x)

π(x, y) ≥ 1− ε

2
.

We deduce that in all states x but some �nite number:∑
y∈Y(x)

π(x, y) log(u(x, y)) ≥ (1− ε

2
)2 log(u(x)),

≥ (1− ε) log(u(x)).

�

The result then follows from the stable behavior of maximum weight scheduling,
except that the latter is de�ned over the set of all feasible schedules. De�ning the
corresponding weight by:

v(x) = max
y∈Y

u(x, y),

the following result shows that it is essentially the same as u(x):

Lemma 5.3. We have:

sup
x∈X

v(x)

u(x)
<∞.

Proof. Let:

v(x, y) =
∏

k:xk≥J

(xkαk)yk .

There are some positive constants m,M such that:

∀x ∈ NK , ∀y ∈ Y, m ≤ u(x, y)

v(x, y)
≤M.

The proof then follows from the fact that:

v(x) = max
y∈Y

u(x, y) ≤M max
y∈Y

v(x, y) = M max
y∈Y(x)

v(x, y) ≤ M

m
max
y∈Y(x)

u(x, y) =
M

m
u(x).

�

The proof of Theorem 1, based on Lemmas 1 and 2, then follows from Foster's
criterion.

Proof. If the vector of tra�c intensities lies in the interior of the capacity region,
there exist some ε > 0 and some probability measure π on Y such that:

(5.2) ∀k = 1, . . . ,K, ρk = ϕk(1− 2ε)
∑
y∈Y

π(y)yk.

Note that we can choose π(y) > 0 for all y ∈ Y.
De�ne the Lyapunov function:

F (x) =
∑

k:xk>0

xkσk
ϕk

log(xkαk).
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The corresponding drift is given by:

∆F (x) =
∑
k

λk(F (x+ ek)− F (x)) +
∑

k:xk>0

φk(x)

σk
(F (x− ek)− F (x)),

=
∑

k:xk=0

ρk
ϕk

log(αk) +
∑

k:xk>0

ρk
ϕk

((xk + 1) log((xk + 1)αk)− xk log(xkαk))

+
∑

k:xk>0

φk(x)

ϕk
((xk − 1) log((xk − 1)αk)− xk log(xkαk)) .

In particular, we have ∆F (x) = G(x) +H(x) with:

G(x) =
∑

k:xk>0

ρk − φk(x)

ϕk
log(xkαk),

H(x) =
∑

k:xk>0

ρk
ϕk

(xk+1) log(1+
1

xk
)+

∑
k:xk>0

φk(x)

ϕk
(xk−1) log(1− 1

xk
)+

∑
k:xk=0

ρk
ϕk

log(αk),

where we use the convention 0 log(0) ≡ 0. Since φk(x) ≤ Jϕk, the function H(x)
is bounded. Regarding G(x), it follows from (5.1) and (5.2) that:

G(x) =
∑
y∈Y

((1− 2ε)π(y)− π(x, y))
∑

k:xk>0

yk log(xkαk),

=
∑
y∈Y

((1− 2ε)π(y)− π(x, y)) log(u(x, y)).

By Lemma 1, we have for all states x but some �nite number:

G(x) ≤ −ε
∑
y∈Y

π(y) log(u(x, y)) + (1− ε)

∑
y∈Y

π(y) log(u(x, y))− log(u(x))

 ,

≤ −ε
∑
y∈Y

π(y) log(u(x, y)) + (1− ε) log

(
v(x)

u(x)

)
.

Since π(y) > 0 for all y ∈ Y, the �rst term tends to −∞ when |x| ≡
∑
k xk tends to

+∞. By Lemma 2, the second term is bounded. We deduce the existence of some
δ > 0 such that ∆F (x) ≤ −δ for all states x but some �nite number. The proof
then follows from Foster's criterion. �

6. Time-Scale Separation

Theorem 5.1 is based on the time-scale separation assumption: in the packet-
level model of section 4, packets �see� a �xed number of �ows, while in the �ow-level
model of section 5, �ows �see� the equilibrium state of packet-level dynamics. In
this section, we remove this assumption. Speci�cally, we prove that when the size
of the �ows grows, the model without time-scale separation converges to the model
with time-scale separation, over any �nite-time horizon. While not proving it,
this suggests that CSMA is optimal for su�ciently large �ow sizes. We actually
conjecture that CSMA is optimal for any �ow size, which we prove at the end of
the section for a speci�c class of networks.

6.1. Scaling. As in section 5, class-k �ows are assumed to arrive according to
a Poisson process of intensity λk. The number of packets per class-k �ow has a
geometric distribution with mean Nσk, where N is some positive integer, that we
refer to as the scaling parameter. In particular, each class-k �ow terminates with
probability 1/(σkN) after each packet transmission. Packets are assumed to have
an exponential size with mean 1/N bits, so as to keep the class-k mean �ow size
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constant and equal to σk bits. In particular, the corresponding tra�c intensity
ρk = λkσk is independent of N .

The random access algorithm is that described in section 4.1. The only dif-
ference is that the attempt rates must be scaled so as to keep the ratio of mean
packet transmission time to mean backo� time constant. Thus each class-k link
now attempts to access the channels at rate Nνk.

6.2. Asymptotic Time-Scale Separation. The state of the network is now
described by the tuple (XN (t), Y N (t)), where XN (t) gives the number of �ows of
each class at time t and Y N (t) the schedule that is selected at time t. This is a
Markov process with transition rates λk from state (x, y) to state (x+ek, y) (class-k
�ow arrival), N(xk−yk)νkβkj from state (x, y) to state (x, y+ekj) (access to channel
j by a class-k �ow), Nykjϕk(1 − 1/(σkN)) from state (x, y) to state (x, y − ekj)
(packet transmission of a class-k �ow over channel j, without �ow completion),
ykjϕk/σk from state (x, y) to state (x− ek, y− ekj) (packet transmission of a class-
k �ow over channel j, with �ow completion).

When N grows, the packet-level dynamics, represented by (Y N (t)), are ac-
celerated with respect to the �ow-level dynamics, represented by (XN (t)). The
following result, proved in the appendix, shows that there is indeed time-scale sep-
aration between the packet level and the �ow level in the limit. We assume that
XN (0) = X(0) for all N ≥ 1.

Theorem 6.1. When N →∞, the stochastic process (XN (t)) converges in distri-
bution to the Markov process (X(t)), which describes the network state under the
time-scale separation assumption.

Proof. In the following, we consider ((XN (t)))N≥1 as a sequence of stochastic
processes in the space DNK ([0,∞[) of càd-làg functions with values in NK with the
Skorohod topology.

First, we have to prove the tightness of the sequence ((XN (t))). It is enough
to remark that, for all N ≥ 1, (XN

k (t)) is stochastically dominated by a Poisson
process of intensity λk and stochastically dominates an M/M/1 queue with arrival
rate λk and service rate ϕk/σk. Thus, the conditions of the Arzelà-Ascoli theorem
are ful�lled and the sequence ((XN (t))) is tight (see [Bil99, Th 12.3]).

We now consider a bounded function f on NK . Denote by ΩN the in�nitesimal
generator of the Markov process (XN (t), Y N (t)). For all x ∈ NK and y ∈ Y, we
have

ΩN (f)(x, y) =

K∑
k=1

λk(f(x+ ek)− f(x))−
K∑
k=1

ϕk/σk

J∑
j=1

ykj(f(x− ek)− f(x)).

Note that ΩN (f)(x, y) does not depend on N . We then de�ne Ω∞(f)(x, y) =
ΩN (f)(x, y). According to the Martingale characterization of Markov jump pro-
cesses (see [RW87]), the process:

(MN
f (t)) =

(
f(XN (t))− f(XN (0))−

∫ t

0

ΩN (f)(XN (s), Y N (s)) ds

)
is a locale martingale and, since the process (XN (t)) is not exploding on [0, t] (it
is stochastically dominated by a Poisson process), it is a martingale.

For each N ≥ 1, de�ne the random measure:

ΓN ([0, t]×B) =

∫ t

0

1{Y (s)∈B} ds, for all B ⊂ Y.
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ΓN is a random variable with value in the set L(Y) of the random measures on
[0,∞[×Y such that if µ ∈ L(Y) then µ([0, t]×Y) = t for all t ≥ 0. Since Y is �nite,
the set L(Y) is compact and then the sequence (ΓN )N≥1 is relatively compact.

Assume that the sequence ((XN (t)),ΓN )N≥1 tends to some limit ((X(t)),Γ).
Since: ∫ t

0

ΩN (f)(XN (s), Y N (s)) ds =

∫ t

0

∑
y∈Y

ΩN (f)(XN (s), y)ΓN (ds× dy)

and f is bounded, this random variable tends in distribution to:∫ t

0

∑
y∈Y

Ω∞(f)(X(s), y)Γ(ds× dy).

It remains to characterize Γ. According to Lemma 1.3 of [Kur92], there exists a
set of random probability measures ϑ(t, .) on Y such that:

Γ([0, t]×B) =

∫ t

0

ϑ(s,B) ds, for B ⊂ Y.

For any function g on Y, we de�ne the martingale:(
M̄N
g (t)

)
=

(
1

N

(
g(Y N (t))− g(Y N (0))−

∫ t

0

ΩN (g)(XN (s), Y N (s)) ds

))
.

For x ∈ NK and y ∈ Y, we have:

ΩN (g)(x, y) =

K∑
k=1

J∑
j=1

N(xk − yk)νkβkj(g(y + ekj)− g(y))

+

(
Nykjϕk

(
1− 1

σkN

)
+
ϕk
σk

)
(g(y − ekj)− g(y)).

The increasing process of this martingale is:〈
M̄N
g (t)

〉
=

1

N2

∫ t

0

ΩN (g)(XN (s), Y N (s)) ds,

≤ 2t

N
max
y∈Y
|g(y)|

(
max
k

ϕk + max
k

νk max
k,j

βkj

)
.

It tends to 0 on all compact sets so that the martingale tends in distribution to
0. Since Y is �nite, g is bounded and (g(Y N (t)) − g(Y N (0)))/N also tends to 0.
Finally, we get that:

1

N

∫ t

0

ΩN (g)(XN (s), Y N (s)) ds

converges in distribution to 0. This implies:∫ t

0

∑
y∈Y

(
K∑
k=1

J∑
j=1

(Xk(s)− yk)νkβkj(g(y + ekj)− g(y))

+ ykjϕk(g(y − ekj)− g(y))

)
ϑ(s, y) ds = 0

and for almost every s in [0, t], we have:∑
y∈Y

(
K∑
k=1

J∑
j=1

(Xk(s)− yk)νkβkj(g(y + ekj)− g(y))

+ ykjϕk(g(y − ekj)− g(y))

)
ϑ(s, y) = 0
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The probability distribution ϑ(s, .) is then the stationary distribution given by (4.1).
It follows that: ∫ t

0

ΩN (f)(XN (s), Y N (s)) ds

converges in distribution to: ∫ t

0

Ω(f)(X(s)) ds

where Ω is the in�nitesimal generator of the Markov process described in section
5. For x ∈ NK , we have

Ω(f)(x) =

K∑
k=1

λk (f(x+ ek)− f(x)) + φk(x)/σk (f(x− ek)− f(x)) ,

where φk(x) is the mean throughput of class k in state x, given by (4.2).
By dominated convergence, (MN

f (t)) tends in distribution to:

(Mf (t)) =

(
f(X(t))− f(X(0))−

∫ t

0

Ω(f)(X(s)) ds

)
,

and (Mf (t)) is a martingale. Using the characterization of the Markov jump pro-
cesses, we get that the process (X(t)) is a Markov process with in�nitesimal gen-
erator Ω.

This concludes the proof. �

6.3. Stability of some Class of Networks. Theorem 6.1 justi�es the time scale
separation for su�ciently large �ows at �nite time horizon and thus does not implies
anything about stability of CSMA without time-scale separation which typically
occurs at in�nite time horizon. Theorems 5.1 and 6.1 suggest that CSMA is optimal
for su�ciently large �ow sizes. We conjecture that CSMA is actually optimal for
any �ow size, in the sense that the Markov process (XN (t), Y N (t)) is ergodic for
any scaling parameter N ≥ 1 provided the vector of tra�c intensities ρ lies in the
interior of the capacity region. To support this conjecture, consider the following
class of networks. We assume that all links have access to the J channels. The
interference graph is the same on all channels and given by some L-partite graph,
i.e. there exists a partition {C1, . . . , CL} of {1, . . . ,K} such that two classes in Cl
do not interfere with each other but a class in Cl does interfere with all classes in
{1, . . . ,K} \ Cl. Examples of L-partite graphs are given in �gure 2. The following
result shows that CSMA is optimal independently of the scaling parameter N :

Proposition 6.2. Any network with a L-partite interference graph is stable for all
vectors of tra�c intensities ρ in the interior of the capacity region.

Proof. For this proof, we need �uid limits. For any x ∈ RK+ , we de�ne |x| ≡∑K
k=1 xk. For all n ≥ 1, let (XN,n(t), Y N,n(t)) be the evolution of the Markov

process when starting from some initial state such that |XN,n(0)| = n. A �uid limit
is a limiting point (X̄N (t)) of the laws of the processes {(XN,n(nt)/n)}n≥1 in the
set of probability measures on the space D of càd-làg functions on R+ with values
in RK+ with the Skorohod topology [Bil99]. It is not di�cult to show that the set of
processes {(XN,n(nt)/n), n ≥ 1} is tight in the set of probability distributions on
the space D endowed with the metric associated with the uniform norm on compact
sets. Therefore, there exists at least one �uid limit and any �uid limit is continuous.
Since the process (Y N,n(nt)) has its values in a �nite space for all n ≥ 1, it can be
proved as in [Dai95, Rob03] that, if there exists a deterministic time T > 0 such
that X̄N (t) = 0 for all t ≥ T , then the Markov process (XN (t), Y N (t)) is ergodic.



80 III. PERFORMANCE OF CSMA IN MULTI-CHANNEL WIRELESS NETWORKS

The proof is then very similar to that given in [FPR10] for random capture
algorithms. Consider a �uid limit (X̄N (t)). We say that a class k is non-empty
at time t if X̄N

k (t) > 0. As long as there is a non-empty class, the J channels are
used. Moreover, if some class in Cl takes channel j, all other non-empty classes in
Cl use this channel. Let αjl(t) be the fraction of time channel j is used by classes
in Cl at time t. For any non-empty class k ∈ Cl, we have:

(6.1)
dX̄N

k

dt
(t) = λk −

ϕk
σk

J∑
j=1

αjl(t).

Now de�ne:

WN (t) =

L∑
l=1

max
k∈Cl

(
X̄N
k (t)

σk
ϕk

)
.

Note that WN (t) = 0 if and only if X̄N (t) = 0. Moreover,

WN (0) ≤M ≡
L∑
l=1

max
k∈Cl

(
σk
ϕk

)
.

Using (6.1) and the fact that:
J∑
j=1

L∑
l=1

αjl(t) = J,

at any time t such that WN (t) > 0, we deduce:

(6.2) WN (t) ≤ max

(
0,M +

(
L∑
l=1

max
k∈Cl

ρk
ϕk

)
t− Jt

)
.

In L-partite networks, the capacity region is given by the throughput vec-
tors φ for which there exist a set {π1, . . . , πJ} of probability distributions over
{C1, . . . , CL} such that:

∀k ∈ Cl, φk ≤ ϕk
J∑
j=1

πj(Cl).

In particular,
L∑
l=1

max
k∈Cl

φk
ϕk
≤

L∑
l=1

J∑
j=1

πj(Cl) = J.

Since ρ lies inside the capacity region, it follows from (6.2) that WN (t) = 0 for all
t ≥ T , with:

T =
1

J −
∑L
l=1 maxk∈Cl ρk

,

which implies the ergodicity of the Markov process (XN (t), Y N (t)). �

7. Infrastructure-Based Networks

We have so far considered a network in ad-hoc mode, without infrastructure.
We now consider A access points to which users must connect. In particular, each
class now corresponds either to uplink tra�c (from the users to an access point)
or to downlink tra�c (from an access point to the users). We study the �ow-level
dynamics of CSMA under the time-scale separation assumption. Speci�cally, we
prove the suboptimality of standard CSMA in this context and introduce a slight
modi�cation of CSMA, we refer to as �ow-aware CSMA, which makes the algorithm
optimal.
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C1 = {3},
C2 = {1, 2, 4, 5}.

(a)

C1 = {1, 2, 3},
C2 = {4, 5, 6}.

(b)

C1 = {1, 2},
C2 = {3, 4},
C3 = {5}.

(c)

Figure 2. Examples of 2-partite (a)-(b) and 3-partite (c) graphs.

7.1. Uplink vs.Downlink. For all i = 1, . . . , A, we denote by Ui and Di the sets
of uplink and downlink classes, respectively, associated with access point i. In the
example of �gure 3, for instance, there are A = 2 access points and K = 6 classes,
with U1 = {2}, D1 = {1, 3}, U2 = {5} and D2 = {4, 6}. An access point cannot
transmit and receive simultaneously on the same channel. In particular, those
classes sharing the same access point, either in uplink or downlink, con�ict with
each other. Formally, for all access points i = 1, . . . , A and all classes k, l ∈ Ui∪Di,
we have (k, l) ∈ Ej for each channel j such that k, l ∈ Vj . We assume that an
access point cannot transmit data on more than one channel at a time but is able
to receive data on the J channels simultaneously (or on a subset of these channels,
i.e. those channels j such that Ui ∩ Vj 6= ∅ for access point i).

3

1

2

4

6

5

Figure 3. A network of 2 access points with 6 classes of links and
its interference graph.

The feasible schedules are those de�ned in section 3.2, with the additional
constraint that each access point cannot transmit data on more than one channel
at a time, that is:

(7.1) ∀i = 1, . . . , A,
∑
k∈Di

yk ≤ 1.

We denote by Y(x) the set of feasible schedules and by Y the union of Y(x) over
all network states x. The corresponding capacity region is de�ned in section 3.3.

7.2. Standard CSMA. We �rst consider the standard CSMA algorithm: each
transmitter waits for a period of random duration before attempting transmission
on some randomly chosen channel. The key di�erence with the ad-hoc wireless
network considered so far is that each access point runs a single instance of the
CSMA algorithm for all its downlink tra�c. In particular, for each access point
i, the attempt rates νk are the same for all classes k ∈ Di. At each attempt, the
access point i selects a class-k �ow with some probability proportional to xk and
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probes channel j with probability βkj . If the probed channel is sensed idle, a packet
of this �ow is transmitted.

It is worth noting that the attempt rate of each access point is independent
of its congestion level, in terms of the number of ongoing downlink �ows at this
access point. This breaks the natural stabilizing e�ect of CSMA we have proven in
Theorem 5.1 in the context of ad-hoc networks, where those classes with a higher
number of �ows get preferential access to the radio channels. In the following,
we illustrate the suboptimality of standard CSMA on two examples with downlink
tra�c only. Note that, in the presence of uplink tra�c only, the model is in fact
equivalent to the ad-hoc network considered so far.

For this purpose, we give the distribution of feasible schedules achieved by the
algorithm under the time-scale separation assumption. Denoting by (Y (t)) the
schedule at time t, we have the analogue of Proposition 4.1:

Proposition 7.1. If both the packet sizes and the backo� times have exponential
distributions, then Y (t) is a reversible Markov process, with stationary measure:

(7.2)

w(x, y) =

A∏
i=1

∏
k∈Ui:xk>0

xk!

(xk − yk)!
αykk

J∏
j=1

β
ykj
kj

×
∏

k∈Di:xk>0

(
xkαk∑
l∈Di xl

)yk J∏
j=1

β
ykj
kj , y ∈ Y(x).

Proof. As for Proposition 4.1, the proof follows from the local balance equations.
For all i, . . . , A, we have for uplink classes:

∀k ∈ Ui, w(x, y)(xk − yk)νkβkj = w(x, y + ekj)ϕk,

while for downlink classes:

∀k ∈ Di, w(x, y)
xk∑
l∈Di xl

νkβkj = w(x, y + ekj)ϕk.

�

The stationary distribution of the schedules π(x, y) follows from normalization.
Again, it is insensitive to the packet size and backo� time distributions beyond the
means. The throughput of class k is given by (4.2).

1 2 3

Figure 4. Network of 3 access points with a single downlink class
per access point and its interference graph.

7.2.1. Example 1. The simplest example showing the suboptimality of CSMA
is shown in Figure 4. It consists of A = 3 access points, a single class per access
point and a single channel. Taking unit physical rates, the optimal stability region
is ρ1 + ρ2 < 1 and ρ2 + ρ3 < 1 where 1 and 3 are the edge classes and 2 is the
center class. Assume for simplicity all links have the same mean packet sizes and
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mean backo� times, so that α1 = α2 = α3 = α for some α > 0. In view of (4.2)
and (7.2), the throughput of the links in state x are given by:

φ1(x) =



α

1 + α
if x2 = 0,

α

1 + 2α
if x2 > 0, x3 = 0,

α+ α2

1 + 3α+ α2
if x2 > 0, x3 > 0,

and

φ2(x) =



α

1 + α
if x1 = 0, x3 = 0,

α

1 + 2α
if x1 > 0, x3 = 0, or x1 = 0, x3 > 0,

α

1 + 3α+ α2
if x1 > 0, x3 > 0.

The throughput of link 3 follows by symmetry. As for a single link, the backo�
times must be chosen su�ciently small to limit the overhead of the algorithm. In
the limit α→∞, we get:

(7.3) φ(x) =


(1, 0, 1) if x1 > 0, x3 > 0,

(1/2, 1/2, 0) if x1 > 0, x2 > 0, x3 = 0,

(1, 0, 0) if x1 > 0, x2 = 0, x3 = 0,

(0, 1, 0) if x1 = 0, x2 > 0, x3 = 0,

the other cases following by symmetry. Note that link 2 is not served when both
links 1 and 3 are active. This is due to the fact that link 2 is in con�ict with both
links 1 and 3 and thus cannot access the channel for an in�nitely small backo� time.
This results in a suboptimal stability region:

Proposition 7.2. The stability region is given by:

ρ1 <
1 + ρ3

2
, ρ3 <

1 + ρ1

2
, ρ2 < π0 +

π1,3

2
,

or

ρ1 <
1 + ρ3

2
,

1 + ρ1

2
≤ ρ3 <

1 + ρ1

2
+

1− ρ1

2
π2,1, ρ2 <

1− ρ1

2
,

or

ρ3 <
1 + ρ1

2
,

1 + ρ3

2
≤ ρ1 <

1 + ρ3

2
+

1− ρ3

2
π2,3, ρ2 <

1− ρ3

2
,

where π0, π1,3, π2,1 and π2,3 are the respective probabilities that:
� both links 1 and 3 are idle when link 2 is always active;
� one of the links 1 or 3 is idle when link 2 is always active;
� link 2 is idle given that link 1 is idle, when link 3 is always active;
� link 2 is idle given that link 3 is idle, when link 1 is always active.

More precisely, the Markov process X(t) is positive recurrent if the vector of tra�c
intensities ρ lies in this region and transient if it lies outside its closure.

Proof. This example is similar to the one studied in [Rob03, p274]. We consider
the �uid limits of the Markov process (X(t)). Speci�cally, we de�ne (X(n)(t)) as
the Markov process X(t) whose initial state is X(n)(0) = (bβ1nc, bβ2nc, bβ3nc) for
some non-negative real numbers β1, β2, β3 such that β1 + β2 + β3 = 1. We then
de�ne:

X̄(n)(t) =
1

n
X(n)(nt).

The �uid limits of the Markov process (X(t)), if they exist, are the limiting points
of this set of processes when n→ +∞. It is easy to check that the Markov process
(X(t)) belongs to the class (C) de�ned in [Rob03, p241] and that the associated
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Proposition 9.3 applies. In particular, the set {(X̄(n)(t)), n ∈ N} is tight and the
�uid limits are continuous. The Markov process (X(t)) is then positive recurrent
if there exists some �nite time after which all �uid limits are null, cf. [Rob03,
Theorem 9.7, p259]; it is transient if, after some �nite time, for any initial state
β1, β2, β3, there are some components of the �uid limits grow at least linearly to
in�nity [Mey95].

We �rst calculate the �uid limit until the �rst time where one component
reaches 0, if any, for all possible initial states. The three components of the process
(X(n)(t)) behave as three coupled M/M/1 queues, with arrival rates λ1, λ2, λ3 and
state-dependent service rates. We denote by µk = 1/σk the maximum service rate
of queue k, so that ρk = λk/µk. The Markov process is positive recurrent if all
queues empty in �nite time in the limit and transient if, starting from any initial
state, at least one queue grows linearly to in�nity after some �nite time.

We start with the case β1 > 0, β2 > 0, β3 > 0. The three queues are then
mutually independent, with respective service rates µ1, 0, µ3. The scaling property
of the M/M/1 queue shows that the process (X̄(n)(t)) weakly converges to the
function:

(β1 + (λ1 − µ1)t, β2 + λ2t, β3 + (λ3 − µ3)t),

until one of the components reaches 0, if any.
We now consider the case β1 = 0, β2 > 0, β3 > 0. In view of (7.3), queue 1 has

service rate µ1 and is empty with probability 1− ρ1. Queues 2 and 3 have service
rates 0, µ3 with probability ρ1 and µ2/2, µ3/2 with probability 1− ρ1. Proposition
9.14 of [Rob03] applies and the process (X̄(n)(t)) weakly converges to the function:

(0, β2 + (λ2 − µ2
1− ρ1

2
)t, β3 + (λ3 − µ3

1 + ρ1

2
)t),

until one of the components reaches 0, if any.
Next, we consider the case β1 = β2 = 0, β3 > 0. In view of (7.3), queue 1 has

service rate µ1. Queue 2 has service rate µ2/2 if queue 1 is empty and 0 otherwise.
This queue is stable if ρ2 < (1 − ρ1)/2, which we assume. Queue 2 then remains
empty in the limit, and the service rate of queue 3 is equal to µ3 with probability
ρ1 + (1 − ρ1)π2,1 and to µ3/2 otherwise. We deduce that the process (X̄(n)(t))
weakly converges to the function:

(0, 0, β3 + (λ3 − µ3(
ρ1 + 1

2
− 1− ρ1

2
π2,1))t),

whenever component 3 is positive.
Finally, we consider the case β1 = β3 = 0, β2 > 0. In view of (7.3), the service

rates of queues 1 and 3 are equal to µ1 and µ3 when both are non-empty and to µ1/2
and µ3/2 otherwise. This system is stable if ρ1 < (1 + ρ3)/2 and ρ3 < (1 + ρ1)/2,
which we assume. Queues 1 and 3 then remain empty in the limit. The service
rate of queue 3 is equal to µ2 with probability π0 and to µ2/2 with probability π1,3.
The process X̄(n)(t) weakly converges to the function:

(0, β2 + (λ2 − µ2(π0 −
π1,3

2
))t, 0),

whenever component 2 is positive.
To conclude the proof, we consider the evolution of the �uid limit in the fol-

lowing �ve cases (the others follow by symmetry):

(1) Assume ρ1 < (1+ρ3)/2 and ρ3 < (1+ρ1)/2. Note that this implies ρ1 < 1
and ρ3 < 1. Queues 1 and 3 empty in �nite time, independently of queue
2. Queue 2 then empties in �nite time if ρ2 < π0 +π1,3/2; it grows linearly
to in�nity if ρ2 > π0 + π1,3/2.
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(2) Assume ρ1 < (1 + ρ3)/2 and ρ3 > (1 + ρ1)/2. If ρ1 ≥ 1 then ρ3 > 1
and queue 3 grows linearly to in�nity. We now assume ρ1 < 1. If ρ2 >
(1− ρ1)/2 then queue 2 grows linearly to in�nity. If ρ2 = (1− ρ1)/2 then
starting from a state where β1 = 0, β2 > 0 and β3 > 0, queue 1 stays
empty, queue 2 is constant and queue 3 grows linearly to in�nity. We
assume that ρ1 < 1 and ρ2 < (1 − ρ1)/2. Starting from the initial state
β1 = β2 = 0, β3 > 0, queue 3 grows linearly to in�nity if ρ3 > (1 + ρ1)/2+
π2,1(1− ρ1)/2. We assume that ρ3 < (1 + ρ1)/2+π2,1(1− ρ1)/2. Starting
from the initial state β1 = β2 = 0, β3 > 0, queue 3 then empties in �nite
time. It remains to prove that, starting from any initial state, queues 1
and 2 empty in �nite time. We �rst note that, since ρ1 < 1 and ρ3 < 1,
queue 1 or queue 3 empties in �nite time. Moreover, if both queues 1
and 3 are empty but not queue 2, then queue 3 grows linearly. Thus we
can assume that queue 1 empties before queue 3. We know that queue 2
empties in �nite time in this case.

(3) Assume ρ1 < (1+ρ3)/2 and ρ3 = (1+ρ1)/2. Note that ρ1 < 1 and ρ3 < 1
in this case. Moreover, we have π0 = 0 and π1,3 = 1 − ρ1, so that the
inequality ρ2 < π0 +π1,3/2 is equivalent to ρ2 < (1−ρ1)/2. If the latter is
satis�ed, then if queue 1 is non-empty then queue 2 empties in �nite time
independently of queue 3. We just have to consider the case where β1 =
β2 = 0 and β3 > 0. Because ρ3 = (1+ρ1)/2 < (1 + ρ1)/2+π2,1(1− ρ1)/2,
queue 3 empties in �nite time. If ρ2 > (1 − ρ1)/2, we choose an initial
state such that queue 1 empties before 3. When queue 1 is empty, queue
3 is constant and queue 2 grows linearly to in�nity.

(4) Assume ρ1 ≥ (1 + ρ3)/2 and ρ3 > (1 + ρ1)/2. Then ρ1 > 1 and ρ3 > 1 so
that queues 1 and 3 grow linearly to in�nity.

(5) Assume ρ1 = (1 + ρ3)/2 and ρ3 = (1 + ρ1)/2. Then ρ1 = ρ3 = 1 and
π0 = π1,3 = 0. If ρ2 = 0, the vector ρ lies on the boundary of the stability
region. If ρ2 > 0, queue 2 grows linearly to in�nity.

�

Note that, when one of the links is always active, the two other links form a
coupled system of two queues as considered by Fayolle and Iasnogorodski [FI79].
In particular, the stability region can be calculated exactly. In the symmetric case
ρ1 = ρ3, the stability condition reduces to ρ1 < 1, ρ2 < π0 +π1,3/2. Figure 5 shows
the corresponding stability region for equal mean �ow sizes.

7.2.2. Example 2. Consider the multi-channel network of Figure 6 with A = 5
access points, a single class per access point and J = 2 channels, further referred to
as the bow tie network. The con�ict graph is the same for both channels. We refer
to class 3 as the center class and to the other classes as the edge classes. We assume
that the mean packet sizes and the mean backo� times are the same for all classes,
so that αk = α for all k = 1, . . . , 5, for some α > 0. We also assume that all classes
except class 3 have the same tra�c intensities. The optimal stability condition is
then given by:

(7.4) ρ3 < 1 and 2ρ1 + ρ3 < 2.

We consider the limiting case where α → ∞ and we assume that the two
channels are chosen uniformly at random. We then deduce from (4.1)-(4.2) the
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Figure 5. Stability condition for the network of Fig. 1 under
standard CSMA (ρ1 = ρ3).
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Figure 6. Network of 5 access points with a single downlink class
per access point and its interference graph.

following throughput vector:

(7.5) φ(x) =



(1, 1, 0, 1, 1) if x1, x2, x4, x5 > 0,(
3
4 ,

3
4 ,

1
2 , 1, 0

)
if x1, x2, x3, x4 > 0, x5 = 0,(

2
3 ,

2
3 ,

2
3 , 0, 0

)
if x1, x2, x3 > 0, x4 = x5 = 0,

(0, 1, 1, 1, 0) if x2, x3, x4 > 0, x1 = x5 = 0,
(1, 1, 0, 0, 0) if x1, x2 > 0, x3 = x4 = x5 = 0,
(1, 0, 0, 0, 0) if x1 > 0, x2 = 0, x3 = x4 = x5 = 0.

The other cases follow by symmetry. The center class is in con�ict with all other
classes for accessing the channels and is either not served when the 4 other classes
are active or served at a low rate when 3 other classes are active. This also results
in a suboptimal stability region:

Proposition 7.3. The bow tie network is unstable whenever:

(7.6) ρ3 >
1

3
ρ4

1 −
2

3
ρ3

1 −
2

3
ρ2

1 + 1.
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Proof. De�ne the throughput vector φ̃ such that φ̃3(x) = φ3(x) and φ̃k(x) =
1{}{xk > 0} for all k 6= 3. The two following inequalities can be veri�ed:

φ̃k(x) ≥ φk(x), for all k, x,(7.7)

φ̃k(x) ≥ φ̃k(y), for all x ≤ y and k such that xk > 0.(7.8)

Now consider the coupling of the stochastic processes (X(t)) and (X̃(t)) describing
the evolution of the queues for the throughput vectors φ and φ̃, respectively, starting
from the same initial state X(0) = X̃(0). The inequality (7.7) and the monotonicity
property (7.8) imply that (X̃(t)) ≤ (X(t)) a.s. at any time t ≥ 0. In particular, the
transience or the null recurrence of (X̃(t)) implies that of (X(t)).

For the modi�ed system, queues 1,2,4 and 5 are independent M/M/1 queues
with load ρ1. If ρ1 ≥ 1, the Markov process (X̃(t)) is null recurrent or transient.
Note that (7.6) then reduces to ρ3 ≥ 0.

Assume now that ρ1 < 1. To prove the transience of (X̃(t)), we use �uid
limits. Since ρ1 < 1 and queues 1,2,4 and 5 are independent M/M/1 queues with
load ρ1 in the modi�ed system, there exists some �nite time after which, for any
initial conditions, the corresponding components of the �uid limit are null. We
then consider the �uid limits with the initial condition X̄3(0) = 1 and X̄k(0) = 0
for all k 6= 3. In this case, Proposition 9.14 of [Rob03, p.241] applies and the �uid
limit satis�es:

X̄3(t) = 1 +

(
λ3 −

φ̄3

σ3

)
t,

as long as this function is positive, where φ̄3 is the throughput of link 3 averaged
over the states of other links. Since each other link is active with probability ρ1, it
follows from (7.5) that:

φ̄3 =
1

3
ρ4

1 −
2

3
ρ3

1 −
2

3
ρ2

1 + 1.

In particular, (X̄3(t)) increases linearly to in�nity whenever inequality (7.6) is sat-
is�ed and, according to [Mey95], the Markov process (X̃(t)) is transient. �

In the homogeneous case ρ1 = ρ3 for instance, Proposition 7.3 implies that the
network is unstable whenever ρ1 > 0.63. In view of (7.4), the optimal stability
condition is ρ1 < 2/3, which shows that the standard CSMA algorithm is not opti-
mal. This suboptimality is illustrated by Fig. 7, the actual stability condition being
obtained by the simulation of the underlying Markov process. In the homogeneous
case for instance, the loss of e�ciency is around 15%.

7.3. Flow-aware CSMA. The �ow-aware CSMA algorithm consists for each ac-
cess point to run one standard CSMA algorithm per �ow. This compensates for the
inherent bias of standard CSMA against downlink �ows and stabilizes the network
whenever possible. Indeed, the stationary measure of the schedules is now given by
(4.1). The only di�erence with the ad-hoc wireless network considered in section
5 is the additional constraint (7.1) on the set of feasible schedules. This does not
change the proof of Theorem 5.1, showing the optimality of �ow-aware CSMA.

8. Conclusion

We have proved that, under the time-scale separation assumption, the dis-
tributed scheduling achieved by standard CSMA exploits the radio resources in an
optimal way in ad-hoc wireless networks. This is due to the fact that each new �ow
adds a link to the network, which competes fairly with the other links for accessing
the radio channels. This is not the case in the presence of access points, due to the
inherent bias of CSMA against downlink �ows. A slight modi�cation of CSMA we
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Figure 7. Stability region of the bow-tie network with two chan-
nels under standard CSMA.

refer to as �ow-aware CSMA is then su�cient to correct this bias and to make the
algorithm optimal.

Proving stability in the absence of the time-scale separation assumption is a
major issue that we plan to address in future work. From a more practical perspec-
tive, a number of simplifying assumptions also need to be relaxed. First, we have
neglected the impact of packet collisions; these could be included in the model,
as done in [JW09] for rate-based adaptive CSMA for instance. One may also ac-
count for the adaptive backo� of the IEEE 802.11 protocol, which is essential in
practice to limit the number of collisions, and for the presence of TCP acknowl-
edgements. Finally, one may think of multi-hop networks where the �ows of some
source-destination pairs must go through one or several relay nodes. Although we
believe that �ow-aware CSMA is still optimal in this more general setting, we have
not yet been able to prove this result.
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1. Introduction

Storage systems. One considers a large scale storage system, it is a set of �le
servers in a communication network. In order to ensure persistence, �les are du-
plicated on several servers. When the disk of a given server breaks down, its �les
are lost but can be retrieved on the other servers if copies are available. For these
architectures a fraction of the bandwidth of a server is devoted to the duplication
mechanism of its �les to other servers. On the one hand, there should be su�ciently
many copies so that any �le has a copy available on at least one server at any time.
On the other hand, in order to use the bandwidth in an optimal way, there should
not be too many copies of a given �le so that the network can accommodate a
large number of distinct �les. These systems are known as distributed hash tables
(DHTs), they play an important role in the development of some large scale dis-
tributed systems, see Rhea et al. [RGK+05] and Rowstron and Druschel [RD01]
for a more detailed presentation.

Failures of disks occur naturally randomly, these events are quite rare but,
given the large number of nodes of these distributed systems, this is not a negligible
phenomenon at the level of the network. If, for a short period of time, several of
the servers break down, it may happen that �les will be lost for good just because
all the available copies were on these servers and because the recovery procedure
was not completed before the last copy disappeared. To design such a system, it
is therefore desirable to �nd a convenient duplication policy and to dimension the
system so that all �les will have at least a copy as long as possible. The natural
critical parameters of the network are the failure rates of servers, the bandwidth
allocated to duplication, the number of �les and the number of servers. The ratio
of the two last quantities being a measure of the storage capacity of the system. It
is important to understand the impact of each of these parameters on the e�ciency
of the storage system.

Stochastic Models. This network can be seen as a classical set of queues with
breakdowns. Numerous stochastic models of such systems have been investigated
in the literature, see Chapter 6 of King [Kin90] for example and the references
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therein. Related models concern queues with retrial and queues with servers of
walking types, see Artalejo and Gómez-Corral [AGC08] and Falin and Temple-
ton [FT97]. For most of the systems analyzed, there are, in general, one or two
nodes which are subject to breakdowns. A queueing analysis is generally done in
this context: convergence in distribution of the associated Markov model and anal-
ysis of the distribution of the availability of the system, of the delays and of queue
sizes,. . . For DHTs, there are very few stochastic models which investigate their
performances; the existing ones describe the evolution of the number of copies of a
single �le. See Chun et al. [CDH+06], Picconi et al. [PBS07] and Ramabhadran
and Pasquale [RP06]. SSee also Chapter V. In most of these studies the inter-
action between di�erent �les, due to the bandwidth sharing limitations, has not
been really considered, except through simulations. The purpose of this chapter is
to investigate the impact of this interaction. The second important aspect is that
a large system, i.e. with a large number of �les, will be considered instead of a
small number of elements. This assumption is quite natural for current distributed
systems.

More precisely, the following simple model is considered: A �le can have at
most two copies, the total bandwidth allocated to �le duplication is given by λN ,
for λ > 0 and N ∈ N. If at some moment there are x ≥ 1 �les with exactly one
copy, a new copy of each of these �les is created at rate λN/x. It is assumed that
initially FN �les are present in the system with two copies and each copy of a �le
disappears at rate µ. Recall that a �le with 0 copies is lost. It will be assumed
that the total number of �les FN is proportional to N , i.e. that FN/N converges
to some β > 0. Clearly enough, this system is transient and the empty state, all
�les are lost, is an absorbing state. The aim of this chapter is of describing the
decay of the network, i.e. how the set of lost �les in increasing. For δ > 0, there
exists some �nite random instant TN (δ), such that a fraction bδNc of the �les are
lost after time TN (δ). The chapter investigates the order of magnitude in N of the
variables TN (δ) as N gets large and the role of the parameters λ, µ and β in these
asymptotics.

In practice, if there are N servers and that each of them has an available band-
width λ to duplicate �les, then the maximal capacity for duplication is λN . The
model described above has therefore an optimal use of the duplication mechanism
since the maximal duplication capacity is always available. For this reason this
model provides upper bounds on the optimal performances of such a system. In
particular, for any duplication mechanisms, after a duration of time with the same
distribution as TN (δ), at least bδNc �les will be lost for good. A more realistic
model, when the total duplication bandwidth is not anymore centralized, is inves-
tigated in Feuillet and Robert [FR12] via mean-�eld limit asymptotics. It turns
out that the corresponding mean-�eld limit can in fact be expressed in terms of the
simple model analyzed in this chapter. The more general case when there are at
most d ≥ 2 copies of a given �le will be investigated in another article to come.

Time Scales of Transient Markov Processes. If, for i ∈ {0, 1, 2}, XN
i (t) de-

notes the number of �les with i copies in the network, then, under Poisson assump-
tions for failures and for duplication processes, (XN

0 (t), XN
1 (t)) is clearly a �nite

Markov process with (FN , 0) as an absorbing state. Contrary to previous works
mentioned above, there is clearly no question of equilibrium here since the system
dies at (FN , 0). A possible approach to investigate the decay of such a system
could be of considering the associated quasi-stationary distributions of the Markov
process. See Darroch and Seneta [DS65] and Ferrari et al. [FKMP95] for exam-
ple. It would give a description of the system conditionally on the event that only
a fraction of the �les has been lost. These quantities are generally expressed in
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terms of the spectral characteristics of the jump matrix. For this reason, explicit
description of these distributions is quite rare outside one-dimensional birth and
death processes. In this chapter, di�erent time scales will be used to investigate
the qualitative behavior of these transient processes. Times scales can be thought
as �lenses�. Two of them will focus on the stable part of the sample path of the
process (if any) and then describe the quasi-stationary behavior of the process..
Finally, a third time scale will focus on the decaying part of the sample paths, i.e.
when the proportion of lost �les is signi�cant and the system tends to extinction.

Stochastic Averaging Principles. It is shown that in some cases, a stochastic
averaging principle (SAP) occurs for this transient process: roughly speaking its
dynamics can be decomposed into two components, one evolving on a fast time
scale and the other one on a slower time scale. The system is fully coupled in
the sense that the jump rates of the slow process depends on the equilibrium of
the fast process, and the jump rates of the fast process depends of the state of
the slow process. See Khasminskii [Kha80] and Freidlin and Wentzell [FW98].
This phenomenon is known to occur for the classical example of loss networks. In
this case the vector of the number of free places of the congested links is the fast
component, see Kelly [Kel91] and Hunt and Kurtz [HK94]. Outside this class of
networks, there are, up to now, few examples of stochastic networks for which a
fully coupled SAP occurs. See Chapter II and Perry and Whitt [PW11] for recent
examples of SAP.

This SAP phenomenon is already well known in the framework of deterministic
dynamical systems, see Guckenheimer and Holmes [GH90]. In a stochastic context,
an additional di�culty, sometimes underestimated, is of controlling the regularity
properties of the family of invariant distributions indexed by the states of the slow
process, instead of the family of �xed points in the deterministic case. This can be
done through a kind of uniform control of some ergodic averages, see Freidlin and
Wentzell [FW98] or by using a martingale representation of the associated Markov
processes, see Kurtz [Kur92]. In any case, there are several delicate technical issues
to address: a convenient tightness result for a set of random measures and the rate
of convergence of ergodic averages. In this chapter, a martingale formulation is also
used but with a technical background signi�cantly reduced. By taking a convenient
state space for random measures, technical results related to extensions of random
measures with speci�c measurability properties are not necessary. Furthermore,
the tightness of the family of invariant distributions of fast processes is obtained as
a consequence of a simple monotonicity property. If the monotonicity property is
quite speci�c, it seems that the method to avoid extension results can be used in a
quite general framework. This will be the subject of further investigations.

Outline of the Chapter. Section 2 introduces the Markov process investigated
and its corresponding martingale representation. Section 3 studies a �uid picture
of the network, i.e. the limit of the sequence of processes (XN

0 (t)/N,XN
1 (t)/N), it

is shown in Theorem 3.1 that its limit, the solution of an ODE, is not trivial when
λ < 2µβ and is (0, 0) when λ > 2µβ. The storage system is therefore properly
designed when λ > 2µβ, otherwise it is ine�cient since it is losing a signi�cant
number of �les right from the beginning. Section 4 is devoted to the critical case λ =
2µβ, Theorem 4.1 shows that the sequence of processes (XN

0 (t)/
√
N,XN

1 (t)/
√
N)

is converging in distribution and that its limit can be expressed in terms of a
non-Markovian one-dimensional process, which is solution of an unusual stochastic
di�erential equation with re�ection at 0. In Section 5, the stable case lambda >
2µ beta is investigated. It is shown that the capacity of the system remains intact
at the normal time scale: For t ≥ 0, Theorem 5.3 proves that the variable (XN

0 (t))
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converges in distribution to a Poisson process. Only a �nite number of �les is lost as
N goes to in�nity. More interesting, Theorem 5.5 shows that on the time scale t→
Nt the transience of the Markov process shows up: at �time� Nt a fraction ψ(t)N
of the �les is lost where ψ(t) is the solution of some �xed point equation. This is the
case where a stochastic averaging principle holds: around time Nt there is a local
equilibrium for which (β−Ψ(t))N �les are still available. As a consequence, t→ Nt
is the convenient time scale to observe the degradation of the storage system. The
proof of the convergence results uses a more or less straightforward extension of the
classical Skorokhod problem formulation, see Skorokhod [Sko61]. The necessary
material is gathered in the appendix to keep the chapter self-contained.

2. The Stochastic Model

Recall that FN is the total number of distinct �les initially present in the
network and XN

1 (t), resp. XN
0 (t) is the number of �les with one copy at time t, the

number of lost �les at this instant. The number XN
2 (t) of �les with two copies at

time t is de�ned by XN
2 (t) = FN−X0(t)−X1(t). In general it will be assumed that

all �les have the maximum number of copies initially. The copy of a �le is lost with
rate µ and, conditionally on XN

1 (t) = x, a �le with only one copy gets an additional
copy with rate λN/x. All events are supposed to occur after an exponentially

distributed amount of time. Under these assumptions (X(t))
def.
= (XN

0 (t), XN
1 (t))

is a Markov process on the state space

S = {x = (x0, x1) ∈ N2 : x0 + x1 ≤ FN},

as mentioned above, with these assumptions, the state (FN , 0) is an absorbing point
of the process (XN (t)).

For x ∈ N2, the Q-matrix QN = (qN (·, ·)) of the process (X(t)) is de�ned by

(2.1)


qN (x, x+ e1) = 2µ(FN − x0 − x1),

qN (x, x− e1) = λN1{x1>0},

qN (x, x− e1 + e0) = µx1.

It is assumed that

(2.2) lim
N→+∞

FN/N = β,

and one denotes ρ = λ/µ.
The stochastic di�erential equations associated with this transient Markov pro-

cess can be written as

XN
0 (t) = XN

0 (0) +

+∞∑
i=1

∫ t

0

1{i≤XN1 (u−)}Nµ,i(du),(2.3)

XN
1 (t) = XN

1 (0)−
∫ t

0

1{XN1 (u−)>0}NλN (du)−
+∞∑
i=1

∫ t

0

1{i≤XN1 (u−)}Nµ,i(du)(2.4)

+

+∞∑
i=1

∫ t

0

1{i≤FN−XN0 (u−)−XN1 (u−)}N2µ,i(du),

where (Nµ,i) and (N2µ,i) are two i.i.d. independent sequence of Poisson processes
with respective parameters µ and 2µ, NλN is an independent Poisson process with
parameter λN . For the ith �le having only one copy, the integrand of the right
hand side of Relation (2.3) corresponds to its de�nitive loss and the �rst term of
the right hand side of Relation (2.4) is associated with its duplication. The last
term of Relation (2.4) represents the loss of a copy of �les with two copies.
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Relation (2.3) can be rewritten as

(2.5) XN
0 (t) = XN

0 (0) + µ

∫ t

0

XN
1 (u) du+MN

0 (t),

where (MN
0 (t)) is the martingale de�ned by

MN
0 (t) =

+∞∑
i=1

∫ t

0

1{i≤XN1 (u−)} [Nµ,i(du)− µdu] ,

its increasing process is given by〈
MN

0 (t)
〉

= µ

∫ t

0

XN
1 (u) du,

in particular, since XN
1 (u) ≤ FN , there exists some constant C0 such that

E
(
MN

0 (t)2
)

= E
(〈
MN

0 (t)
〉)
≤ C0Nt

holds for all t ≥ 0 and N ≥ 1.
Similarly, if f is in Cc(N), the set of functions with �nite support on N, Rela-

tion (2.4) gives the representation

(2.6) f(XN
1 (t)) = f(XN

1 (0)) + µ

∫ t

0

[
f(XN

1 (u)− 1)− f(XN
1 (u))

]
XN

1 (u) du

+N

∫ t

0

Ω

[
FN
N
− XN

1 (u) +XN
0 (u)

N

]
(f)(XN

1 (u)) du+MN
1 (t),

where , for y ≥ 0, Ω[y] is the functional operator de�ned by

(2.7) Ω[y](f)(x) = 2µy(f(x+ 1)− f(x)) + λ1{x>0}(f(x− 1)− f(x)), x ∈ N,

and (MN
1 (t)) is a martingale such that, for some constant C1,

E
(
MN

1 (t)2
)
≤ C1N‖f‖∞,FN t,

holds for all t ≥ 0 and N ≥ 1, where ‖f‖∞,FN = max{|f(x)| : 0 ≤ x ≤ Fn}.

3. The Overloaded Network

In this section, it is proved that a signi�cant fraction of �les is lost quickly
if the network is not correctly dimensioned, i.e. when the ratio ρ = λ/µ is less
than 2β. In this case, for a large N , the fraction of �les with two copies at time
t, (FN −XN

0 (t)−XN
1 (t))/N is close to ρ/2 if t is large enough. As a consequence

(β − ρ/2)N �les are lost and the network stabilizes with a subset of �les with two
copies whose cardinality is of the order of ρ/2. This is the critical case which is
analyzed in Section 4 where it is proved that the number of lost �les is of the order
of
√
N . When ρ > 2β, no �le is lost at the �uid level. This case is investigated

precisely in Section 5.

Theorem 3.1 (Fluid Equations). If (XN
0 (0), XN

1 (0)) is some �xed element of S
and limN→+∞ FN/N = β then the sequence of processes (XN

0 (t)/N,XN
1 (t)/N)

converges in distribution to{[
(β − ρ/2)(1− 2e−µt + e−2µt), (2β − ρ)

(
e−µt − e−2µt

)]
if ρ ≤ 2β,

(0, 0) if ρ > 2β.
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Proof. Let (XN
0 (0), XN

1 (0)) = (y0, y1) ∈ S. Equations (2.5) and (2.6), with the
function f ≡ Id on [0, FN ], can be written as

XN
0 (t)

N
=
y0

N
+ µ

∫ t

0

XN
1 (u)

N
du+

MN
0 (t)

N
,(3.1)

XN
1 (t)

N
=
y1

N
+ 2µ

∫ t

0

(
FN
N
− XN

1 (u) +XN
0 (u)

N

)
du− λt(3.2)

− µ
∫ t

0

XN
1 (u)

N
du+

MN
1 (t)

N
+ λ

∫ t

0

1{XN1 (u)=0} du.

Doob's Inequality and the bounds on the second moments of the associated mar-
tingales show that, for i = 0, 1 and t ≥ 0,

P
(

sup
0≤s≤t

MN
i (s)

N
≥ ε
)
≤ 1

ε2
E(Mi(t)

2) ≤ 1

N

Cit

ε2
.

Therefore, the two sequences of processes (MN
0 (t)/N) and (MN

1 (t)/N) converge in
distribution to 0 uniformly on compact sets.

For T > 0, δ > 0 and for i = 0, 1, de�ne wT
XNi

(δ) as the modulus of continuity

of the process (XN
i (t)) on the interval [0, T ],

(3.3) wTXNi
(δ) = sup

0≤s≤t≤T, |t−s|≤δ

∣∣XN
i (t)−XN

i (s)
∣∣ .

By using the fact that, for some constant C, XN
i (t) ≤ FN ≤ CN for all N ∈ N and

t ≥ 0, the above equations and the convergence of the martingales to 0 give that, for
any ε > 0 and η > 0, there exists δ > 0 such that the relation P(wT

XNi
(δ) ≥ η) ≤ ε

holds for all N .
This implies that the sequence of stochastic processes (XN

0 (t)/N,XN
1 (t)/N) is

tight. See Billingsley [Bil99] for example. One denotes by (x0(t), x1(t)) a limiting
value for some subsequence (Nk). From Equation (3.1), one gets the relation

x0(t) = µ

∫ t

0

x1(u) du.

De�ne

(3.4) ZN (t) = µ

∫ t

0

(
2FN
N
− 3XN

1 (u)

N
− 2XN

0 (u)

N

)
du− λt+

MN
1 (t)

N
.

Equation (3.2) can be also interpreted as the fact that

(3.5) (XN
Z (t), RNZ (t))

def.
=

(
XN

1 (t)/N, λ

∫ t

0

1{XN1 (u)=0} du

)
is the unique solution of the Skorokhod problem associated with the process (ZN (t)).
See Appendix for a de�nition.

The sequence (ZNk(t)) is converging in distribution and by the continuous
mapping theorem

lim
k→+∞

(ZNk(t)) = y(t)
def.
= µ

∫ t

0

(2β − 2x0(u)− 3x1(u)) du− λt(3.6)

= (2µβ − λ)t− µ
∫ t

0

(
3x1(u) + 2µ

∫ u

0

x1(v) dv

)
du

The solutions of Skorokhod problems being continuous with respect to the pro-
cess (ZN (t)), see Appendix D of Robert [Rob03] for example, one gets that
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(XN
Z (t), RNZ (t)) converges in distribution to the solution (xy(t), ry(t)) of the Sko-

rokhod problem associated with (y(t)). Since xy(t) = x1(t) and y(t) = F (x1)(t)
with

F (x)(t) = (2µβ − λ)t− µ
∫ t

0

(
3x(u) + 2µ

∫ u

0

x(v) dv

)
du,

the process (x1(t)) is a solution of the generalized Skorokhod problem (GSP) as-
sociated with the functional F . See Appendix. Proposition 5.8 shows that such
a solution exists and is unique. This implies that there is a unique, deterministic
limiting value for the sequence (XN

0 (t)/N,XN
1 (t)/N). It is easy to check that the

explicit expressions for (x0(t)) and (x1(t)) given in the statement of the theorem
are indeed the solutions of the GSP. The convergence in distribution is therefore
established. �

4. The Critical Case

To complete the picture of the overloaded network ρ ≤ 2β, one considers the
critical case ρ = 2β. As it will be seen, the convergence result is expressed in
terms of a re�ected stochastic di�erential equation. The appendix presents the
corresponding de�nition and a result of existence and uniqueness.

Theorem 4.1. If λ/µ = 2β and, for some γ ∈ R,

lim
N→+∞

1√
N

(
FN −N

ρ

2

)
= γ and lim

N→+∞

XN
1 (0)√
N

= y,

and XN
0 (0) = 0, then for the convergence in distribution

lim
N→+∞

(
XN

0 (t)√
N

,
XN

1 (t)√
N

)
=

(
µ

∫ t

0

Y (u) du, Y (t)

)
,

where (Y (t)) is the solution starting at y of the stochastic di�erential equation

(4.1) dY (t) =
√

2λ dB(t) + µ

(
2γ − 3Y (t)− 2µ

∫ t

0

Y (u) du

)
dt

re�ected at 0, i.e. with the constraint that Y (t) ≥ 0, for all t ≥ 0. The process
(B(t)) is a standard Brownian motion on R.

The solution of SDE (4.1) is non-Markovian due to the integral term in the
drift.

Proof. Equations (2.5) and (2.6), with the function f ≡ Id on [0, FN ], can be
written as

X
N

0 (t)
def.
=

XN
0 (t)√
N

= µ

∫ t

0

XN
1 (u)√
N

du+
MN

0 (t)√
N

,(4.2)

X
N

1 (t)
def.
=

XN
1 (t)√
N

=
XN

1 (0)√
N

+ 2µ

∫ t

0

(
γN −

XN
1 (u)√
N
− XN

0 (u)√
N

)
du(4.3)

− µ
∫ t

0

XN
1 (u)√
N

du+
MN

1 (t)√
N

+ λ
√
N

∫ t

0

1{XN1 (u)=0} du,
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with γN = (FN − Nρ/2)/
√
N . With the same notations as in Section 2, the

martingales (MN
0 (t)) and (MN

1 (t)) are

MN
0 (t) =

+∞∑
i=1

∫ t

0

1{i≤XN1 (u−)}[Nµ,i(du)− µ du]

MN
1 (t) =

+∞∑
i=1

∫ t

0

1{i≤FN−XN1 (u−)−XN0 (u−)}[N2µ(du)− 2µ du]

−MN
0 (t)−

∫ t

0

1{XN1 (u)>0}[NλN (du)− λN du].

Their increasing processes are given by〈
1√
N
MN

0

〉
(t) = µ

∫ t

0

XN
1 (u)

N
du,〈

1√
N
MN

1

〉
(t) = 2µ

∫ t

0

(
FN
N
− XN

1 (u)

N
− XN

0 (0)

N

)
du+

〈
1√
N
MN

0

〉
(t)

+ λ

∫ t

0

1{XN1 (u)>0} du.

The last term of the right hand side of the above equation is (RN (t)) de�ned by
Equation (3.5) in the proof of the previous theorem. It is the second component
of the solution to the Skorokhod problem associated with the process (ZN (t)) of
Relation (3.4). It has been seen that the sequence of processes (ZN (t)) is converging
to (y(t)) de�ned in Equation (3.6). In this case (y(t)) is identically 0, the solution
of the corresponding Skorokhod problem associated with (y(t)) is therefore (0, 0).
The continuity properties of the solutions of the Skorokhod problem imply that
the process (RN (t)) converges to 0. Consequently, by Theorem 3.1 one gets the
convergence in distribution

lim
N→+∞

(∫ t

0

1{XN1 (u)=0} du

)
= 0

and therefore

lim
N→+∞

(〈
1√
N
MN

0

〉
(t)

)
= 0 and lim

N→+∞

(〈
1√
N
MN

1

〉
(t)

)
= (2λt).

One deduces that (M
N

1 (t))
def.
= (MN

1 (t)/
√
N) converges to (

√
2λB(t))) where (B(t))

is a standard Brownian motion and that (M
N

0 (t))
def.
= (MN

0 /
√
N) converges to 0.

See Ethier and Kurtz [EK86] for example.
One now proves that the processes(

X
N

0 (t)
)
def.
=

(
XN

0 (t)√
N

)
and

(
X
N

1 (t)
)
def.
=

(
XN

1 (t)√
N

)
are tight. If (h(t)) is a function on R+, one denotes,

‖h‖∞,t = sup
0≤s≤t

|h(s)|

and wth(·) is the modulus of continuity of h de�ned by Equation (3.3). Equa-
tion (4.2) gives, for 0 ≤ t ≤ T ,∥∥∥XN

0

∥∥∥
∞,t
≤
∥∥∥MN

0

∥∥∥
∞,T

+ µ

∫ t

0

∥∥∥XN

1

∥∥∥
∞,u

du.
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Equation (4.3) shows that (XN
1 (t)/

√
N) is the �rst coordinate of the solution of

the Skorokhod problem associated with (ZN1 (t)) de�ned by

(4.4) ZN1 (t)
def.
= yN + µ

∫ t

0

(
2γN − 3

XN
1 (u)√
N

+ 2
XN

0 (u)√
N

)
du+

MN
1 (t)√
N

,

with yN = XN
1 (0)/

√
N . By using the explicit representation of the solution of a

Skorokhod problem in dimension 1, one has

‖XN

1 ‖∞,t ≤ 2‖ZN1 ‖∞,t, for 0 ≤ t ≤ T,

see Appendix D of Robert [Rob03] for example, then∥∥∥XN

1

∥∥∥
∞,t
≤ 2yN + 4µγNT + 2

∥∥∥MN

1

∥∥∥
∞,T

+ 4µ

∫ t

0

(∥∥∥XN

0

∥∥∥
∞,u

+
∥∥∥XN

1

∥∥∥
∞,u

)
du

≤ UN (T ) + (4 + µT )µ

∫ t

0

∥∥∥XN

1

∥∥∥
∞,u

du,

with UN (T )
def.
= 2yN + 4µγNT + 2‖MN

1 ‖∞,T + 4µT‖MN

0 ‖∞,T .
Gronwall's Inequality gives that the relation ‖XN

1 ‖∞,t ≤ UN (T ) exp((4+µT )µt)
holds for 0 ≤ t ≤ T , and, consequently,∥∥∥XN

0

∥∥∥
∞,t
≤ µTUN (T )e(4+µT )µt +

∥∥∥MN

0

∥∥∥
∞,T

.

The convergence of martingales shows that the two sequences of random variables

(UN (T )) and ‖MN

0 ‖∞,T converge in distribution. Consequently, for ε > 0, there
exists some K > 0 such that for i = 0, 1 and all N ≥ 0,

P
(
‖XN

i ‖∞,t > K
)
≤ ε.

If η > 0, there exists N0 and δ su�ciently small so that, for all N ≥ N0,

2µδT (γN + 2K) < η/2 and P
(
wT
M
N
1

≥ η
)
≤ ε.

The last relation coming from the fact that the sequence (M
N

1 (t)) is converging in
distribution to a continuous process. One gets �nally

P
(
wTZN1

(δ) ≥ η
)
≤ P

(
2µδT

[
γN +

∥∥∥XN

0

∥∥∥
∞,T

+
∥∥∥XN

1

∥∥∥
∞,T

]
+ wT

M
N
1

(δ) ≥ η
)

≤ P
(∥∥∥XN

0

∥∥∥
∞,T
≥ K

)
+ P

(∥∥∥XN

1

∥∥∥
∞,T
≥ K

)
+ P

(
wT
M
N
1

(δ) ≥ η/2
)
≤ 3ε.

The sequence (ZN1 (t)) is therefore tight, by continuity of the solution of the Sko-
rokhod problem the same property holds for (XN

1 (t)/
√
N) and consequently for

(XN
0 (t)/

√
N).

If (Y0(t), Y1(t)) is a limit of a subsequence [(XNk
0 (t)/

√
Nk, X

Nk
1 (t)/

√
Nk)]. By

Equation (4.2) and (4.3), one gets that(
XNk

1 (t)√
Nk

, λ
√
N

∫ t

0

1{XN1 (u)=0} du

)
converges in distribution to the solution of the Skorokhod problem associated with
the process(

y +
√

2λB(t) + µ

∫ t

0

(
2γ − 3Y1(u)− 2µ

∫ u

0

Y1(v) dv

)
du

)
.
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One concludes that (Y1(t)) is the solution of the generalized Skorokhod problem for
the functional F de�ned by

F (h)(t) = y +
√

2λB(t) + µ

∫ t

0

(
2γ − 3h(u)− 2µ

∫ u

0

h(v) dv

)
du.

Proposition 5.8 in the appendix shows that there is a unique solution (Y1(t)) and
consequently a unique limit (Y0(t), Y1(t)). The theorem is proved. �

5. The Time Scales of the Stable Network

The asymptotic properties of the network are investigated under the condition
ρ = λ/µ > 2β. In Section 3 it has been shown that, in this case, the system
is stable at the �uid level, i.e. that the fraction of lost �les is 0. Of course this
does not change the fact that the system is still transient with the absorbing state
(FN , 0). To have a precise idea on how the system reaches this state, there are
three interesting time scales to consider:

(1) Slow time scale: t→ t/N ,

(2) Normal time scale: t→ t,

(3) Linear time scale: t→ Nt,

they are investigated successively in this section. The following elementary lemma
will be used throughout the section.

Lemma 5.1. If ρ = λ/µ > 2β, for any β0 > β such that λ/µ > 2β0, ε > 0, η > 0
and T > 0, there exists N0 ∈ N such that

(1) Coupling: there exists a probability space where the relation

XN
1 (t) ≤ Lβ0

(Nt),∀t ≥ 0,

holds for all N ≥ N0 and t ≥ 0, with (Lβ0(t)) the process of the number of
customers of an ergodic M/M/1 queue with arrival rate 2µβ0 and service
rate λ and with initial condition Lβ0

(0) = XN
1 (0).

(2) The relation

P

 sup
0≤s,t≤T,
|t−s|≤δ

1

N

∫ tN

sN

Lβ0
(u) du > η

 ≤ ε
holds.

Proof. There exists some β0 ≥ β and N0 ≥ 1 such that λ > 2β0µ and that
FN ≤ Nβ0 for N ≥ N0. It is enough to take the M/M/1 queue with arrival rate
2µβ0 and service rate λ.

Denote by A the event on the left hand side of the last relation to prove. If,
for x ∈ N, τx denotes the hitting time of x by the process (Lβ0

(t)), for δ < 1/2, one
has

P(A) ≤ P
(
τbηNc ≤ NT

)
.

By ergodicity of this process and Proposition 5.11 of Robert [Rob03] for example,
there exists some 0 < α < 1 such that the sequence (αNτbNηc) converges in dis-
tribution. The last term of the above relation is thus arbitrarily small as N gets
large. �
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The slow time scale. A description of the asymptotic behavior for the slow
time scale is presented informally. From Relation (2.1), one can see that the Q-
matrix of the process on the slow time scale (XN

0 (t/N), XN
1 (t/N)) has the following

asymptotic expansion

lim
N→+∞


qN (x, x+ e1) = 2µβ,

qN (x, x− e1) = λ1{x1>0},

qN (x, x− e1 + e0) = 0.

With elementary arguments which are skipped one can easily get the following
proposition. It states that, on the slow time scale, with probability 1 no �le is lost
at all in the limit.

Proposition 5.2. The sequence of processes (XN
0 (t/N), XN

1 (t/N)) converges in
distribution to the process (0, Lβ(t)), where (Lβ(t)) is the process of the number of
jobs of an M/M/1 queue with arrival rate 2µβ and service rate λ.

The normal time scale. It is shown that, on the normal time scale, the stability
does not only hold on the �uid level: almost surely there is a �nite number of losses
in any �nite time interval, more precisely losses occur as a Poisson process, see
Theorem 5.3. The capacity λN of the network is thus able to maintain an almost
complete set of �les. The following proposition shows in particular that the number
of de�nitive losses at time t > 0 is �nite with a Poisson distribution.

Theorem 5.3. If ρ = λ/µ > 2β,
� the sequence of processes (XN

0 (t)) converges in distribution to a Poisson point
process on R+ with rate 2µβ/(ρ− 2β).

� For t > 0, as N goes to in�nity, the random variable XN
1 (t) converges in

distribution to a geometric distribution with parameter 2β/ρ.

The second convergence is for the marginal distribution of (XN
1 (s)) at time

t. One cannot expect a convergence in distribution of the sequence of processes
(XN

1 (t)). Indeed, since the sequence of processes (XN
1 (t/N)) is converging in dis-

tribution to the law of the M/M/1 process (Lβ(t)), for 0 ≤ s < t, the distribution
of (XN

1 (s), XN
1 (t)) and of (Lβ(Ns), Lβ(Nt)) are close. Between time Ns and Nt,

theM/M/1 �forgets� its location at time Ns (just because it hits 0 with probability
1) so that when N goes to in�nity the couple (XN

1 (s), XN
1 (t)) converges in distri-

bution to the distribution of two independent geometric distributions. The sample
paths of a possible limit of (XN

1 (s)) would not have regularity properties.

Proof. De�ne

ηN (t)
def.
=

∫ t

0

XN
1 (u) du.

For 0 ≤ s ≤ t, the above lemma gives that,

ηN (t)− ηN (s) =

∫ t

s

XN
1 (u) du ≤

∫ t

s

Lβ0(Nu) du =
1

N

∫ Nt

Ns

Lβ0(u) du.

The criteria of the modulus of continuity and Lemma 5.1 give that the sequence of
processes (ηN (t)) is tight. The above inequality and the ergodic theorem applied
to the ergodic Markov process (Lβ0(t)) show also that, almost surely,

(5.1) lim sup
N→+∞

∫ t

0

XN
1 (u) du ≤ 2β0

ρ− 2β0
t.
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For T > 0 �xed and K > 0,

P(XN
0 (T ) ≥ K) ≤ P

(
µ

∫ T

0

XN
1 (u) ≥ K/2

)
+ P

(
MN

0 (T ) ≥ K/2
)

≤ P

(
µ

∫ T

0

XN
1 (u) ≥ K/2

)
+

4

K2
E

(
µ

∫ T

0

XN
1 (u) du

)
.

One can thus choose K so that P(XN
0 (T ) ≥ K) ≤ ε holds for N ≥ N0 for some

N0 ∈ N. As in the proof of Lemma 5.1, for δ > 0, there exists some N1 ∈ N such
that if N ≥ N1 then

P
(

sup
0≤s≤T

Lβ0
(s) ≥ δN

)
≤ ε.

In the same way as in the proof of the above lemma, one can construct an M/M/1
process (ZN (t)) whose arrival and service rates are respectively

2µ

(
FN
N
− K

N
− δ
)

and λ,

and such that, on the event,

AT
def.
=

{
XN

0 (T ) ≤ K, sup
0≤t≤NT

Lβ0
(t) ≤ δN

}
,

the relation XN
1 (t) ≥ ZN (Nt) holds for all t ≤ T . Hence, almost surely,

(5.2) lim inf
N→+∞

ηN (t) ≥ lim inf
N→+∞

1

N

∫ Nt

0

ZN (u) du =
2(β − δ)

ρ− 2(β − δ)
t.

holds on AT . By letting δ go to 0 and β0 to β in Equations (5.1) and (5.2)
respectively, one gets that the variable ηN (t) converges almost surely to αt with
α = 2βµ/(ρ− 2β). Consequently, the tightness of the sequence of processes (ηN (t))
implies that it is converging in distribution to (αt).

Note that t 7→ XN
0 (t) can also be seen as a point process with jumps of size 1.

By Equation (2.5), one has(
XN

0 (t)− µ
∫ t

0

XN
1 (u) du

)
is a martingale with respect to the natural �ltration of the associated Poisson
processes. The random measure

ΛN ([0, t]) = µ

∫ t

0

XN
1 (u) du

is a compensator of the point process t 7→ XN
0 (t). See Kasahara and Watan-

abe [KW86]. It has therefore been shown that the sequence of compensators is
converging to the deterministic measure α dx. Theorem 5.1 of [KW86], see also
Brown [Bro78], gives the convergence in distribution of (XN

0 (t)) to a Poisson pro-
cess with rate α.

In a similar way as before, through the convergence of the Q-matrix, the as-
ymptotic distribution of XN

1 (t) can be easily obtained by conditioning on the event
{XN

0 (t) ≤ K} for K large and by using arbitrarily close M/M/1 processes at equi-
librium as upper and lower stochastic bounds for XN

1 (t). Details are skipped. �
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The linear time scale t→ Nt. On the linear time scale, it will be shown that a
fraction Ψ(t) of the �les is lost at time t. In some way the linear time scale gives a
picture of the decay of the network.

For N ≥ 1, the random measure µN on N×R+ is de�ned as, for a measurable
function g : N× R+ → R+,

〈µN , g〉 =

∫
R+

g(XN
1 (Nt), t) dt.

Note that if g(x, t) = h(x)1{[0,T ]}(t) for T > 0, then

〈µN , g〉 =
∑
x∈N

h(x)
1

N

∫ NT

0

1{XN1 (t)=x} dt.

Consequently (µN ) is a relatively compact sequence of random Radon measures on
N×R+. See Dawson [Daw93] for example. Note that the measure identically null
can be a possible limit of this sequence.

From now on, one �xes (Nk) such that (µNk) is a converging subsequence
whose limit is ν. By taking a convenient probability space, one can assume that
the convergence of (µNk) holds almost surely for the weak convergence of Radon
measures.

Since, for N ≥ 1, µN is absolutely continuous with respect to the product of the
counting measure on N and Lebesgue measure on R+, the same property holds for
the limiting measure ν. Let (x, t) → πt(x) denote its (random) density. It should
be remarked that, one can choose a version of πt(x) such that the map (ω, x, t)→
πt(x)(ω) on the product of the probability space and N × R+ is measurable by
taking πt(x) as a limit of measurable maps,

πt(x) = lim sup
s→0

1

s
ν({x} × [t, t+ s]).

See Chapter 8 of Rudin [Rud87] for example.

Proposition 5.4. For the convergence in distribution of continuous processes

lim
k→+∞

(
µ

Nk

∫ Nkt

0

XNk
1 (u) du

)
= (Ψ(t))

def.
=

(
µ

∫ t

0

〈πu, I〉 du

)
,

where I(x) = x for x ∈ N. Moreover, almost surely, for all t ≥ 0,∫ t

0

πu(N) du = t.

It must be noted that the last relation is crucial, it shows that the masses of the
measures µNk , for k ≥ 1, do not vanish at in�nity. This property is sometimes ab-
sent from the proofs of stochastic averaging principles, it is nevertheless mandatory
to identify πu as an invariant distribution of a Markov process.

Proof. The criteria of the modulus of continuity is used to prove the tightness of

(ΨN (t))
def.
=

(
µ

N

∫ Nt

0

XN
1 (u) du

)
.

By Lemma 5.1

ΨN (t)−ΨN (s) =
µ

N

∫ Nt

Ns

XN
1 (u) du ≤ µ

N2

∫ N2t

N2s

Lβ0
(u) du.

As in the proof of Theorem 5.3, one concludes that the sequence of processes (ΨN (t))
is tight.



104 IV. ON A TRANSIENT STOCHASTIC NETWORK WITH FAILURES

For K > 0 and t ≥ 0, the almost sure convergence of the measures (µNk) gives
the convergence

lim
k→+∞

1

Nk

∫ Nkt

0

XNk
1 (u)1[0,K](X

Nk
1 (u)) du =

∫ t

0

〈
πu, I1[0,K]

〉
du,

where I(x) = x. By using again Lemma 5.1, one gets that

1

Nk

∫ Nkt

0

XNk
1 (u)1{XNk1 (u)≥K} du ≤ 1

N2
k

∫ N2
kt

0

Lβ0(u)1{Lβ0 (u)≥K} du,

and the ergodic theorem applied to (Lβ0(t)) shows that the last quantity is con-
verging in distribution to (

tE
(
Lβ0

(∞)1{Lβ0 (∞)≥K}

))
where Lβ0(∞) is the limit in distribution of (Lβ0(t)), a geometrically distributed
random variable. For ε > 0, K is chosen su�ciently large so that the last quantity
is less than ε/2, consequently if k is large enough, one has

1

Nk

∫ Nkt

0

XNk
1 (u)1{XNk1 ≥K} du ≤ ε.

One deduces that (Ψ(t)) is the only possible limiting process for (ΨNk(t)). This
proves the �rst half of the proposition.

For K ≥ 1, the convergence of (µNk) gives the relation

lim
k→+∞

1

Nk

∫ Nkt

0

1{XNk1 (u)≤K} du = ν([0,K]× [0, t]) =

∫ t

0

πu([0,K]) du.

By using again the stochastic domination by an ergodic M/M/1 queue,

1

Nk

∫ Nkt

0

1{Lβ0 (u)≤K} du ≤ 1

Nk

∫ Nkt

0

1{XNk1 (u)≤K} du.

by letting k go to in�nity one gets that, almost surely,

tP(Lβ0
(∞) ≤ K) ≤

∫ t

0

πu([0,K]) du ≤
∫ t

0

πu(N) du,

now if K go to in�nity, one obtains the relation∫ t

0

πs(N) ds = t

holds for all t ∈ N and consequently for all t ≥ 0. The proposition is proved. �

Theorem 5.5 (Rate of Decay of the Network). If ρ = λ/µ > 2β, then, as N goes
to in�nity, the process (XN

0 (Nt)/N) converges to (Ψ(t)) where Ψ(t) is the unique
solution y ∈ [0, β] of the equation

(5.3) (1− y/β)
ρ/2

ey+µt = 1.

For t ≥ 0, the process (XN
1 (Nt + u), u > 0) converges in distribution to the sta-

tionary process of the number of jobs of an M/M/1 queue with service rate λ and
arrival rate 2µ(β −Ψ(t)).

It is easily seen that the asymptotic expansion Ψ(t) − β ∼ β exp(−2(β + µt)/ρ)
holds as t goes to in�nity. The last part of the theorem states that, �around� time
Nt, the process XN

1 has a local equilibrium.



5. THE TIME SCALES OF THE STABLE NETWORK 105

Proof. Equation (2.6) gives that, for f ∈ Cc(N)

(5.4) f(XN
1 (Nt))− f(XN

1 (0))−MN
f,1(Nt) = N2

∫ t

0

Ω[YN (u)](f)(XN
1 (Nu)) du

+ µN

∫ t

0

∆−(f)(XN
1 (Nu))XN

1 (Nu) du

with, from Equation (2.5),

YN (u) =
FN
N
− XN

1 (Nu)

N
− MN

0 (Nu)

N
− µ

N

∫ Nu

0

XN
1 (v) dv,

and ∆−(f)(x) = (f(x− 1)− f(x))1{x≥1}. The bound on the increasing process of
the martingale (MN

f,1(t)) at the end of Section 2, Doob's Inequality and Lemma 5.1
show that the sequence of processes(

1

N2

[
f(XN

1 (Nt))−f(XN
1 (0))−MN

f,1(Nt)

−µN
∫ t

0

(∆−(f)(XN
1 (Nu))XN

1 (Nu) du

])
converges to 0 for the topology of the uniform norm on compact sets.

By using Lemma 5.1, one gets that

XN
1 (Nu)

N
≤ Lβ0

(N2u)

N
,

hence the sequence of processes (XN
1 (Nu)/N) converges in distribution to 0.

The bound on the increasing process and Proposition 5.4 show that the sequence
of processes (YNk(t)) converges in distribution to (β − Ψ(t)). One deduces from
Equation (5.4) that the sequence of processes(∫ t

0

Ω[β −Ψ(u)](f)(XNk
1 (Nku)) du

)
=

(∫
N×[0,t]

Ω[β −Ψ(u)](f)(x)µNk(dx, du)

)
converges to 0.

The convergence of the (µNk) and Proposition 5.4 give therefore that, almost
surely, the relations∫ t

0

〈πu,Ω[β −Ψ(u)](f)〉 du = 0 and
∫ t

0

πu(N) du = t,

hold for all t ≥ 0 and all functions f ∈ Cc(N). Note that one has used the fact that
Cc(N) has a countable dense subset for the uniform norm.

If ∆ is the subset of all real numbers u ≥ 0 such that one of the relations{
πu(N) 6= 1,

〈πu,Ω[β −Ψ(u)](f)〉 6= 0, for some f ∈ Cc(N),

holds, then the Lebesgue measure of ∆ is 0. Hence if u 6∈ ∆, then πu(N) = 1 and
〈πu,Ω[β −Ψ(u)](f)〉 = 0 for all f ∈ Cc(N). Since Ω[β − Ψ(u)] is the in�nitesimal
generator of an M/M/1 queue with arrival rate 2µ(β − Ψ(u)) and service rate λ,
one gets that πu is a geometric distribution on N with parameter 2µ(β −Ψ(u))/λ.

From Proposition 5.4 one gets that, for t ≥ 0,

Ψ(t) = µ

∫
[0,t]\∆

〈πu, I〉 du = µ

∫ t

0

2µ(β −Ψ(u))

λ− 2µ(β −Ψ(u))
du.

Straightforward calculus gives the relation

(β − ψ(u))ρ/2eψ(u) = βρ/2e−µu.
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It is easily checked that since 2β < ρ, there is a unique Ψ(u) < β satisfying the
above equation. The theorem is proved. �

The theorem gives directly the following corollary on the asymptotic behavior
of TN (δ), the �rst time when a fraction δ of the �les has been lost.

Corollary 5.6. If ρ = λ/µ > 2β then, for N ≥ 1 and δ ∈ (0, 1),

TN (δ) = inf{t ≥ 0 : XN
0 (t) ≥ δFN},

then, for the convergence in distribution,

lim
N→+∞

TN (δ)

N
=

1

µ

(
−ρ

2
log(1− δ)− δβ

)
.

Appendix. Generalized Skorokhod Problems

For the sake of self-containedness, this section presents quickly the more or
less classical material necessary to state and prove the convergence results used in
this chapter. The general theme concerns the rigorous de�nition of a solution of
a stochastic di�erential equation constrained to stay in some domain and also the
proof of the existence and uniqueness of such a solution. See Skorokhod [Sko61],
Anderson and Orey [AO76], Chaleyat-Maurel and El Karoui [EKCM78] and,
in a multi-dimensional context, Harrison and Reiman [HR81] and Taylor and
Williams [TW93] and, in a more general context, Ramanan [Ram06]. See Ap-
pendix D of Robert [Rob03] for a brief account.

We �rst recall the classical de�nition of Skorokhod problem. If (Z(t)) is some
function of the set D(R+,R) of càdlàg functions de�ned on R+, the couple of func-
tions [(X(t)), (R(t))] is said to be a solution of the Skorokhod problem associated
with (Z(t)) whenever

(1) X(t) = Z(t) +R(t), for all t ≥ 0,

(2) X(t) ≥ 0, for all t ≥ 0,

(3) t→ R(t) is non-decreasing, R(0) = 0 and∫
R+

X(t) dR(t) = 0.

The generalization used in this chapter corresponds to the case when (Z(t)) is itself
a functional of (X(t)).

Definition 5.7 (Generalized Skorokhod Problem).
If G : D(R+,R) → D(R+,R) is a Borelian function, ((X(t)), (R(t))) is a solution
of the generalized Skorokhod Problem (GSP) associated with G if ((X(t)), (R(t))) is
the solution of the Skorokhod Problem associated with G(X), in particular, for all
t ≥ 0,

X(t) = G(X)(t) +R(t) and
∫
R+

X(t) dR(t) = 0.

The classical Skorokhod problem described above corresponds to the case when
the functional G is constant and equal to (Z(t)). If one takes

G(x)(t) =

∫ t

0

σ(x(u)) dB(u) +

∫ t

0

δ(x(u)) du,

where (B(t)) is a standard Brownian motion and σ and δ are Lipschitz functions
on R, the �rst coordinate (X(t)) of a possible solution to the corresponding GSP
can be described as the solution of the SDE

dX(t) = σ(X(t)) dB(t) + δ(X(t)) dt
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re�ected at 0.

Proposition 5.8. If G : D(R+,R)→ D(R+,R) is such that, for any T > 0, there
exists a constant CT such that, for all (x(t)) ∈ D(R+,R) and 0 ≤ t ≤ T ,

(5.5) sup
0≤s≤t

|G(x)(s)−G(y)(s)| ≤ CT
∫ t

0

|x(u)− y(u)|du,

then there exists a unique solution to the generalized Skorokhod problem associated
with the functional G and the matrix P .

Proof. De�ne the sequence (XN (t)) by induction (X0(t), R0(t)) = 0 and, for
N ≥ 1, (XN+1, RN+1) is the solution of the Skorokhod problem (SP) associated
with G(XN ), in particular,

XN+1(t) = G
(
XN

)
(t) +RN+1(t) and

∫
R+

XN+1(u) dRN+1(u) = 0.

The existence of such a solution is guaranteed as well as the Lipschitz property of the
solutions of a classical Skorokhod problem, see Proposition D.4 of Robert [Rob03],
this gives the existence of some constant KT such that, for all N ≥ 1 and 0 ≤ t ≤ T ,∥∥XN+1 −XN

∥∥
∞,t ≤ KT

∥∥G (XN
)
−G

(
XN−1

)∥∥
∞,t ,

where ‖h‖∞,T = sup{|h(s)| : 0 ≤ s ≤ T}. From Relation (5.5), this implies that∥∥XN+1 −XN
∥∥
∞,t ≤ α

∫ t

0

∥∥XN −XN−1
∥∥
∞,u du,

with α = KTCT . The iteration of the last relation yields the inequality∥∥XN+1 −XN
∥∥
∞,t ≤

αN tN−1

(N − 1)!

∫ t

0

∥∥X1
∥∥
∞,u du, 0 ≤ t ≤ T.

One concludes that the sequence (XN (t)) is converging uniformly on compact sets
and consequently the same is true for the sequence (RN (t)). Let (X(t)) and (R(t))
be the limit of these sequences. By continuity of the SP, the couple ((X(t)), (R(t)))
is the solution of the SP associated with G(X), and hence a solution of the GSP
associated with G.

Uniqueness. Let (Y (t)) be another solution of the GSP associated with G. In
the same way as before, one gets by induction, for 0 ≤ t ≤ T ,

‖X − Y ‖∞,t ≤
(αt)N

N !

∫ t

0

‖X − Y ‖∞,u du,

and by letting N go to in�nity, one concludes that X = Y . The proposition is
proved. �
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1. Introduction

The Ehrenfest Process. In this chapter we consider the following continuous-
time version of the classical Ehrenfest urn model. This process has been introduced
to study the heat exchange between bodies. One assumes that each particle of a
set of N particles is located in one of two boxes (bodies), 0 and 1 say. A particle in
box 0 [resp. 1] goes into box 1 [resp. 0] at rate ν [resp. µ]. One denotes by EN (t)
the number of particles in box 1 at time t ≥ 0. This birth-and-death process can
also be represented as EN (t) = Y1(t) + · · ·+ YN (t), where (Yi(t), 1 ≤ i ≤ N) are N
i.i.d. Markov jump processes with values in {0, 1}.

Originally, the model is a discrete-time process (ZN (k)) and each unit of time
a particle is taken at random (i.e. all particles equally likely) to be moved from
one box to the other; ZN (k) is the number of particles in box 1 at time k. This
corresponds to the symmetrical case µ = ν and, clearly, EN (t) can be represented
as ZN (NNµ((0, t])) if NNµ is a Poisson process with rate Nµ. The process (EN (t))
follows the same path as (ZN (k)) but on a time scale with a factor Nµ. The
Markov chain (ZN (k)) is also a random walk on the graph of the hypercube {0, 1}N ,
where edges connect elements that di�er at only one coordinate. The equilibrium
properties of (EN (t)) and (ZN (k)) are fairly well known, in particular a quite precise
estimate of the duration of time to reach equilibrium is available. See Diaconis et
al. [DGM90].

Results on transient quantities of this process, like the distribution of the �rst
time when box 0 is empty, are rarer. There are generic results on birth-and-death
process which describe some of these distributions in terms of spectral characteris-
tics of the associated in�nitesimal generator: the spectral measure and a family of
orthogonal polynomials. See Karlin and McGregor [KM57, KM59]. In practice,
the corresponding orthogonal polynomials and, sometimes, their spectral measure
do not have a simple representation; this complicates signi�cantly detailed inves-
tigations of these hitting times. In the symmetrical case µ = ν, Palacios [Pal93]

111



112 V. TRANSIENT BEHAVIOR OF EHRENFEST AND ENGSET PROCESSES

gives closed-form expressions for the averages of hitting times and Bingham [Bin91]
and Flajolet and Huillet [FH08] obtains a representation of their distributions. In
the general case Crescenzo [DC98] and Flegg et al. [FGP08] provide expressions
of the densities. It turns out that the expressions obtained in these papers involve,
in general, sums of combinatorial terms for which asymptotic results (when N goes
to in�nity) may be di�cult to obtain. Note that this is nevertheless done in the
symmetrical case in Flajolet and Huillet [FH08].

The Engset Process. This is one of the oldest stochastic models of commu-
nication networks, see Engset [Eng98]. For this model there are N sources of
communication which are active (state 1) or inactive (state 0). An active source
becomes inactive at rate µ. The total number of simultaneous active sources can-
not exceed the quantity CN , the number of circuits of the network. An inactive
source can therefore become active only if there are already strictly less than CN
active sources; In this case it occurs at rate ν. If XN (t) is the number of active
communications at time t, when CN = N the process is just the Ehrenfest process.
Otherwise (XN (t)) can be described as a re�ected version of (EN (t)). At equilib-
rium the expression for the probability that XN is equal to CN is known under the
name of Engset Formula. For transient characteristics, the important quantity is
the time it takes to have the full capacity CN of the network used. For this reason,
the distribution of the hitting time of CN by (XN (t)) is of special interest. To
the best of our knowledge, results concerning this hitting time are quite rare, in
particular for possible asymptotics when N goes to in�nity.

A Storage System. Another, more recent, motivation for considering (XN (t)) is
the stochastic analysis of a storage system where �les are duplicated on CN servers.
Each server breaks down independently at rate µ, in which case it is repaired but
all its �les are lost. As a simpli�ed model, XN (t) is de�ned as the number of copies
of a speci�ed �le, if XN (t) = x then a copy of the �le is lost if one of the servers
breaks down, i.e. at rate xµ. If XN (t) = 0, there is no copy of the �le in the system,
it is lost so that 0 is an absorbing point. If 0 < x < CN then a new copy of the
�le may be added but at rate ν(N − x); Nν is the maximal capacity of duplication
of the system. It is easily seen that as long as (XN (t)) does not hit 0, (XN (t)) is
precisely the Engset process. In this context it is of special interest to study the
distribution of the �rst time when the �le is lost, i.e. the hitting time of 0. Another
point of view is studied in Chapter IV.

A Collection of Exponential Martingales. This chapter relies heavily on the
use of martingales to derive explicit, simple, expressions of the Laplace transforms
of the hitting times of a state of the system. One obtains expressions of these
transforms as ratios of simple integrals for which various asymptotic results, when
N goes to in�nity, can be derived quite easily with standard technical tools. In
particular one does not need to cope with the asymptotic behavior of sums of
combinatorial expressions. Quite surprisingly, up to now, martingales did not play
a major role in the previous studies of the Ehrenfest process. One can mention
Simatos and Tibi [ST10] where a martingale approach is used to estimate certain
exit times for multi-dimensional Ehrenfest processes. It is one of the results of this
chapter to show that a simple and important family of martingales allows a quite
detailed investigation of this process, and also of its variants like the Engset process.

The key ingredient of this chapter is a set of non-negative martingales which
will be called exponential martingales. If (M(t)) is a martingale on some probability
space, the associated exponential martingale is the solution (Z(t)) of the stochastic
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di�erential equation (SDE)

dZ(t) = Z(t−) dM(t), t ≥ 0,

where Y (t−) is the left limit of Y at t and dY (t) is the limit on the right of t of
s 7→ Y (s)−Y (t−). It is called the Doléans exponential of (M(t)). See Chapter IV of
Rogers and Williams [RW87] for example. Although there is an exponential mar-
tingale for each martingale, a small subset of these martingales plays an important
role. For the standard Brownian motion (B(t)) this is the martingale(

exp
(
βB(t)− β2t/2

))
,

for a �xed β ∈ R. It is very helpful to derive the explicit expressions for Laplace
transforms of hitting times associated with Brownian motion. See Revuz and
Yor [RY99]. For jump processes, this is less clear. It does not seem that a �clas-
si�cation� of exponential martingales exists in general, even for birth-and-death
processes. See Chapter V of Feinsilver [Fei78] and Schoutens [Sch00] for related
questions. Some examples of important processes are reviewed.

For ξ ∈ R+, Nξ denotes a Poisson process with rate ξ and (Nξ,i) an i.i.d.
sequence of such Poisson processes. All Poisson processes are assumed to be inde-
pendent.

� Random Walks. The classical exponential martingale associated with the
random walk (S(t)) = (Nλ([0, t])−Nµ([0, t])) is given by, for β ∈ R,

(1.1)
(
exp

[
−βS(t)− t

(
λ
(
1− e−β

)
+ µ

(
1− eβ

))])
.

It is the exponential martingale associated with the martingale(
β(S(t)− (λ− µ)t)

)
.

The corresponding re�ected process is the M/M/1 queue with input rate λ
and service rate µ.

� The M/M/∞ Process. This is a classical Markov process on N whose
Q-matrix Q = (q(x, y)) is, for x ∈ N, q(x, x+ 1) = λ and qN (x, x− 1) = µx.
It can be also seen as a kind of discrete Ornstein-Uhlenbeck process, de�ned
as the solution (L(t)) of the following SDE:

dL(t) = Nλ(dt)−
L(t−)∑
i=1

Nµ,i(dt).

The following martingale was introduced in Fricker et al. [FRT99], for β ∈ R:

(1.2)
((

1 + βeµt
)L(t)

exp
(
−βeµtλ/µ

))
.

It is the exponential martingale associated with the martingale(∫ t

0

(1+βeµs) [Nλ(ds)−λ ds]−
+∞∑
i=1

∫ t

0

1

1+βeµs
1{i<L(s−)}[Nµ,i(ds)−µds]

)
.

� The Ehrenfest Process. Such a process (EN (t)) with N particles can be
seen as the solution of the SDE

dL(t) =

N−L(t−)∑
i=1

Nν,i(dt)−
L(t−)∑
i=1

Nµ,i(dt).

It will be seen that the corresponding exponential martingale is given, for
β ∈ R, by

(1.3)

((
1− βµe(µ+ν)t

)EN (t) (
1 + βνe(µ+ν)t

)N−EN (t)
)
.
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It is the exponential martingale associated with the martingale de�ned by,
up to the multiplicative factor β(µ+ν),(
N∑
i=1

∫ t

0

e(µ+ν)s
(
1{Yi(s−)=1}[Nµ,i(ds)−µds]−1{Yi(s−)=0}[Nν,i(ds)−ν ds]

))
,

where (Yi(t)) are such that EN (t) = Y1(t) + · · · + YN (t). Recall that the
Engset process is a re�ected version of this process.

From these exponential martingales, explicit expressions of Laplace transforms of
the distribution of hitting times associated with these processes can be derived. It
may be not be as straightforward as in the case of Brownian motion since the space
variable t is not separated from the space variable, but a convenient integration
with respect to the free parameter β solves the problem. See Chapters 5 and 6
of Robert [Rob03] for the M/M/1 and M/M/∞ processes and Section 3 for the
Ehrenfest process. See also Schoutens and Teugels [ST98].

From the point of view of potential theory, these martingales are associated
with the set of extreme harmonic functions. This statement can be made precise
in terms of space-time Martin boundary. See Lamperti and Snell [LS63] and the
discussion in Section 3.

Organization of the Chapter. In Section 2, the two stochastic processes are de-
�ned precisely. In Section 3, the exponential martingale for the Ehrenfest process
is introduced, and, based on it, several interesting martingales for the Ehrenfest
process and the Engset process are constructed. As a corollary, closed-form expres-
sions of the Laplace transform of the hitting time of a given state are obtained as
the ratio of simple integrals. This holds in particular for the blocking time for the
Engset process. The last three sections are devoted to the analysis of the asymp-
totic behavior of the distribution of the hitting time of CN and 0 when N goes to
in�nity in such a way that CN∼ηN for some 0 < η ≤ 1. Each section considers
one of the three possible regimes: sub-critical when ν < η, the process �lives� in the
neighborhood of νN , super-critical when the di�erence CN −XN (t) converges to a
�nite process, and, �nally, critical when CN−XN (t) is of the order of

√
N . For each

regime, by taking advantage of the simple expressions of the corresponding Laplace
transforms obtained, various convergence-in-distribution results are derived.

2. The Stochastic Model

The Ehrenfest process. Let (Y (t)) be the simple Markov process on {0, 1} whose
Q-matrix QY is given by

QY =

(
−ν ν
µ −µ

)
.

For N ∈ N, if (Yi(t)), 1 ≤ i ≤ N , are N independent copies of (Y (t)), the
Ehrenfest process (EN (t)) is also a birth-and-death process but on the state space
{0, 1, . . . , N}, de�ned as

(2.1) EN (t) = Y1(t) + Y2(t) + · · ·+ YN (t).

The Q-matrix of (EN (t)) will be denoted as QEN , for x ∈ {0, . . . , N},
(2.2) qEN (x, x− 1) = µx and qEN (x, x+ 1) = ν(N − x).

The Engset process. For 1 ≤ CN ≤ N , the Engset process (XN (t)) is a birth-
and-death process on {1, . . . , CN} which can be seen as a re�ected version of (EN (t))
at the boundary CN , i.e. its Q-matrix QXN = (qN (x, y)) is given by, for 0 ≤ x ≤
CN ,

(2.3) qXN (x, x− 1) = µx and qXN (x, x+ 1) = ν(N − x) if x < CN .
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In particular the process (XN (t)) has the same distribution as the process (EN (t))
constrained to the state space {0, . . . , CN}. In particular, when CN = N , the two
processes (XN (t)) and (EN (t)) starting from the same initial state have the same
distribution.

As ergodic birth-and-death processes, the Markov processes (XN (t)) and (EN (t))
are reversible and their stationary distribution at x is, up to a normalization con-
stant, given by (

N

x

)(
ν

µ

)x
,

if x is an element of their respective state space.

Normalization of the time scale. By considering the time scale t → t/(ν + µ)
in the analysis of the processes (EN (t)) and (XN (t)), it can be assumed without
any loss of generality that ν + µ = 1. This will be the case in this chapter.

A limiting regime. In the following it will be assumed that the constant CN is
asymptotically of the order of N , i.e. that

(2.4) η := lim
N→+∞

CN/N,

holds for some η ∈ (0, 1].
For t large the probability that the variable Y (t) de�ned above is at 1 is given

by its equilibrium distribution at 1, that is ν. The law of large numbers gives
that EN (t) is of the order of Nν. Roughly speaking, if Nν < CN for N large,
i.e. ν < η, then the boundary at CN should not play a signi�cant role for �rst-
order quantities related to (XN (t)) and therefore the processes (XN (t)) and (EN (t))
should have the same behavior in the limit. On the contrary if ν ≥ η, due to the
re�ecting boundary at CN for (XN (t)), the Ehrenfest and the Engset processes
should behave di�erently. This phenomenon will be stated more precisely in the
last three sections.

3. Positive Martingales

Several families of positive martingales for the Ehrenfest and the Engset pro-
cesses are introduced in this section. More speci�cally, when (Z(t)) is either (XN (t))
or (EN (t)), one identi�es a set of functions f : N×R+ 7→ R+ such that the process
(f(Z(t), t) is a martingale, i.e. that, for t ≥ 0, the relation

E (f(Z(t), t) | Ft) = f(Z(s), s), for s ≤ t,

holds almost surely, where (Ft) is the natural �ltration associated with (Z(t)).
If QZ = (qZ(·, ·)) is the Q-matrix of (Z(t)), this probabilistic property is equiv-

alent to the fact that the function f is space-time harmonic with respect to QZ ,
i.e. that the relation

(3.1)
∂

∂t
f(x, t) +QZ(f(·, t))(x) = 0

holds for x ∈ N and t ≥ 0, where for h : N 7→ R+,

QZ(h)(x) =
∑
y∈N

q(x, y)h(y).

A space-time harmonic function of the Markov process (Z(t)) is just an har-
monic function of the transient Markov process ((Z(t), t)). See Appendix B of
Robert [Rob03] for example. When (Z(t)) is (EN (t)), one will prove that there
is a family fβ , β ∈ R of such functions. As it will be seen, these martingales
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can be interpreted as exponential martingales. They will give in particular an ex-
plicit expression for the Laplace transform of the hitting times associated with both
processes (EN (t)) and (XN (t)).

For a given birth-and-death process, there is already a complete description of
all such positive martingales. This is the (space-time) Martin boundary of the birth-
and-death process, see Lamperti and Snell [LS63]. This description is expressed in
terms of the orthogonal polynomials associated with the birth-and-death process
which may be de�ned by an induction relation or by the measure with respect to
which they are orthogonal, see Karlin and Mc Gregor [KM59] and Chapter 2 of
Szeg® [Sze75]. As long as moments of some transient characteristics are investi-
gated, these martingales can be used but, in general, they do not seem to be really
helpful to analyze the distributions of hitting times.

This situation is quite classical, for Brownian motion for example, for which
there is a family of martingales indexed by N ∈ N: if HN is the Hermite polynomial
of degree N , then (MN (t)) = (tN/2HN (B(t)/

√
t)) is a martingale. Another fam-

ily of martingales is provided by the exponential martingale (exp(βB(t)− β2t/2))
indexed by β ∈ R. This exponential martingale can be expressed as a weighted
sum of the martingales (MN (t)), but to get explicit expressions of the distributions
of hitting times, it is the really useful martingale. See Propositions 3.4 and 3.8 of
Chapter 3 of Revuz and Yor [RY99] for example. In the case of birth-and-death
processes, a general result concerning the construction of such exponential mar-
tingales from the martingales associated with the orthogonal polynomials does not
seem to exist.

3.1. Exponential Martingales for the Ehrenfest Process. Due to the simple
structure of the Ehrenfest process, these martingales are really elementary. Nev-
ertheless they play a fundamental role; most of the asymptotic results obtained in
this chapter are based on these martingales. A more general version in a multi-
dimensional context has been introduced by Simatos and Tibi [ST10].

Proposition 3.1 (Exponential martingales). For β ∈ R, the process

(3.2) (Mβ
N (t)) =

((
1− βµet

)EN (t) (
1 + βνet

)N−EN (t)
)

is a martingale.

Proof. De�ne, for N ≥ 1, t ≥ 0 and 0 ≤ x ≤ N ,

(3.3) hβN (x, t) = (1− βµet)x(1 + βνet)N−x.

Clearly, the relations

∂

∂t
hβ1 (0, t)=βνet=−QY (hβ1 (·, t))(0) and

∂

∂t
hβ1 (1, t)=−βµet=−QY (hβ1 (·, t))(1),

hold, where QY is the Q-matrix of (Y (t)) introduced in Section 2. Consequently,
the function hβ1 is space-time harmonic for the matrix QY , equivalently (f(Y (t), t))
is a martingale.

If ((Yi(t)), 1 ≤ i ≤ N) are N independent copies of (Y (t)), then, by using the
independence of the processes (Yi(t)), i = 1, . . . , N and Equation (2.1), one gets
that the process(

N∏
i=1

f(Yi(t), t)

)
dist.
=
(
Mβ
N (t)

)
=
(
hβN (EN (t), t)

)
is also a martingale with respect to the �ltration (Ft)=(σ<Yi(s), s ≤ t, 1 ≤ i ≤
N>). In particular the function hβN is space-time harmonic with respect to QEN .

�
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Martingales Associated with Orthogonal Polynomials. As remarked by Kar-
lin and McGregor [KM57, KM65], the polynomials associated with the Ehrenfest
process are the N + 1 Krawtchouk polynomials (KNn , 0 ≤ n ≤ N) de�ned by

(3.4) KNn (x) =

(
N

n

)−1 n∑
`=0

(−1)`
(
x

`

)(
N − x
n− `

)(µ
ν

)`
, 0 ≤ n, x ≤ N.

These polynomials are orthogonal with respect to the binomial distribution((
N

k

)
νkµN−k, 0 ≤ k ≤ N

)
.

The classical identity, see Karlin and McGregor [KM65] for example,

(3.5)
N∑
n=0

(
N

n

)
KNn (x)un = (1 + u)N−x

(
1− µ

ν
u
)x
, u ∈ R,

and the above proposition give that(
N∑
n=0

(
N

n

)
KNn (EN (t))βnent

)
=
(
M

β/ν
N (t)

)
is a martingale. As a consequence one gets that, for any 0 ≤ n ≤ N , the process(
KNn (EN (t)) exp(nt)

)
is a martingale. The martingale (Mβ

N (t)) can thus be seen as
an encoding of these (N+1) martingales in the same way as the exponential martin-
gale of the Brownian motion with the Hermite polynomials, or the martingale (1.2)
with the Poisson-Charlier polynomials. See Schoutens [Sch00] and Schoutens and
Teugel [ST98] and see Robert [Rob03].

Note that the space variable EN (t) and the time variable t are not separated in
Expression (3.2) of the exponential martingale. Provided that it can be used, Doob's
optional stopping theorem applied to some hitting time of some speci�ed state x
does not give useful information on the distribution of this variable. But given
that there is a free parameter β ∈ R in Expression (3.2) and that the martingale
property is clearly preserved by integration with respect to β, one may try to �nd
a measure on R+ that will �separate� the space and time variables. The following
proposition uses such a method.

Proposition 3.2. For any α > 0 and t ≥ 0, if

(3.6)


INα (t) = e−αt

∫ 1

0

(1− u)EN (t)

(
1 +

ν

µ
u

)N−EN (t)

uα−1 du,

JNα (t) = e−αt
∫ 1

0

(1− u)N−EN (t)
(

1 +
µ

ν
u
)EN (t)

uα−1 du,

and
TENx = inf{t > 0 : EN (t) = x}, 0 ≤ x ≤ N,

then (Iα(t ∧ TEN0 )) and (Jα(t ∧ TENN )) are martingales.

Proof. Since (N−EN (t)) is also an Ehrenfest process but with the two parameters
µ and ν exchanged, one needs only to prove that the process (Iα(t ∧ TEN0 )) is a
martingale.

De�ne

fN (x, t) :=

∫ e−t/µ

0

hβN (x, t)βα−1 dβ,

where hβN is de�ned by Equation (3.3); then

∂fN
∂t

(x, t) =

∫ e−t/µ

0

∂hβN
∂t

(x, t)βα−1 dβ − e−αt

µα
h
e−t/µ
N (x, t).
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Note that the last term of the above expression is 0 if x 6= 0. Consequently, for
x 6= 0 and t ≥ 0,

∂fN
∂t

(x, t) +QEN (fN )(x, t) =

∫ e−t/µ

0

[
∂hβN
∂t

(x, t) +QEN (hβN )(x, t)

]
βα−1 dβ = 0,

because hβN is space-time harmonic with respect to QEN as in the proof of Proposi-
tion 3.1. In other words, the function fN is space-time harmonic for the Q-matrix
of the stopped process (EN (t ∧ TEN0 )), hence(

fN

(
EN

(
t ∧ TEN0

)
, t ∧ TEN0

))
=
(
INα

(
t ∧ TEN0

))
is a martingale. �

It is now easy to get a representation of the Laplace transform of the hitting
times for the Ehrenfest process.

Proposition 3.3 (Laplace Transform of Hitting Times). For 0 ≤ x ≤ y ≤ N and
if TENx = inf{t > 0 : EN (t) = x}, the relations

(3.7) Ey
(
e−αT

EN
x

)
=
Bx(α)

By(α)
, and Ex

(
e−αT

EN
y

)
=
Dx(α)

Dy(α)

hold, with

(3.8)


Bx(α) =

∫ 1

0

(1− u)x
(

1 +
ν

µ
u

)N−x
uα−1 du,

Dx(α) =

∫ 1

0

(1− u)N−x
(

1 +
µ

ν
u
)x
uα−1 du.

There is in fact only one result here since (N −EN (t)) is, as already remarked,
an Ehrenfest process with the parameters µ and ν exchanged. The second relation
of (3.7) is therefore a consequence of the �rst one.

Proof. The martingale Iα(t∧T0) is bounded and so uniformly integrable. There-
fore, Doob's optional stopping Theorem gives the relation

Ey(Iα(0)) = Ey(Iα(Tx)),

the �rst relation of (3.7) follows. �

By expanding one of the terms of the integrand of (3.8), ones gets

Bx(α) =

N−x∑
k=0

(
N − x
k

)(
ν

µ

)k ∫ 1

0

(1− u)xuα+k−1 du

=

N−x∑
k=0

(
N − x
k

)(
ν

µ

)k
Γ(x+ 1)Γ(α+ k)

Γ(α+ x+ k + 1)
,

by Euler's integral for Beta functions and Gamma functions. See Whittaker and
Watson [WW96] page 254 for example. Laplace transforms of hitting times can
therefore also expressed as ratio of such sums, as is quite common for hitting times
of birth-and-death processes. See Equation (4.4) of Karlin and McGregor [KM65]
for example. Flajolet and Huillet [FH08] use this kind of representations in the
symmetrical case. As will be seen, from the compact representation (3.8) with
integrals, one will get asymptotic results for the distribution of these variables with
standard techniques.
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3.2. Martingales for the Engset Process. It has been seen that the Engset
process (XN (t)) is a re�ected version of the process (EN (t)) at the boundary CN .
The two families of martingales of Proposition 3.2 cannot be used directly if the
sample path of (EN (t)) may exceed CN , when the hitting times of 0 is analyzed for
example. The idea is to construct a linear combination of the martingales (Iα(t))
and (Jα(t)) such that the space-time harmonicity of the corresponding function
which is valid when the space variable in {1, . . . , CN−1} holds also at the boundary
CN . This method has been used in Kennedy [Ken76] in the case of re�ected
random walks.

Proposition 3.4. For α > 0, de�ne

(3.9)


bN (α) = ν

∫ 1

0

(1− u)CN
(

1 +
ν

µ
u

)N−CN−1

uα du,

dN (α) = µ

∫ 1

0

(1− u)N−CN−1
(

1 +
µ

ν
u
)CN

uα du,

and

(KN
α (t)) = (dN (α)INα (t) + bN (α)JNα (t)),

where (INα (t)) and (JNα (t)) are de�ned by (3.6) with EN (t) replaced by XN (t).
Then, if TXN0 is the hitting time of 0 by (XN (t)), the process (KN

α (t ∧ TXN0 )) is a
martingale.

Proof. De�ne the function gα such that, for all t ≥ 0 and 0 ≤ x ≤ CN ,

gα(x, t) = dN (α) e−αt
∫ 1

0

(1− u)x
(

1 +
ν

µ
u

)N−x
uα−1 du

+ bN (α) e−αt
∫ 1

0

(1− u)N−x
(

1 +
µ

ν
u
)x
uα−1 du.

The function gα is space-time harmonic for the matrix QXN on {1, . . . , CN − 1},
that is [

∂gα
∂t

+QXN (gα)

]
(x, t) = 0, 0 < x < CN ,

since the two matrices QXN and QEN are identical as long as the starting point
is in {1, . . . , CN − 1}, and (INα (t ∧ TEN0 )) and (JNα (t ∧ TENN )) are martingales by
Proposition 3.2.

The space-time harmonicity of gα for the matrix QEN at CN < N gives[
∂gα
∂t

+QXN (gα)

]
(CN , t) = −ν(N − CN ) [gα(CN + 1, t)− gα(CN , t)] .

For 0 ≤ y ≤ 1, one has

(1−y)CN+1

(
1+

ν

µ
y

)N−CN−1

−(1−y)CN
(

1+
ν

µ
y

)N−CN
= − y

µ
(1−y)CN

(
1+

ν

µ
y

)N−CN−1

,

and, similarly[
∂gα
∂t

+QXN (gα)

]
(CN , t) =

(N − CN )

µ
(dN (α)bN (α)− bN (α)dN (α)) = 0.

The function gα is therefore space-time harmonic for the Q-matrix of the stopped
process (XN (t ∧ TXN0 )), hence the process (KN

α (t ∧ TXN0 )) is a martingale. �
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Proposition 3.5 (Laplace Transform of Hitting Times for Engset Process). For
0 ≤ x ≤ y ≤ CN , if TXNx = inf{s ≥ 0 : XN (s) = x}, then, for α ≥ 0,
(3.10)

Ex
(
e−αT

XN
y

)
=
Dx(α)

Dy(α)
and Ey

(
e−αT

XN
x

)
=
dN (α)By(α) + bN (α)Dy(α)

dN (α)Bx(α) + bN (α)Dx(α)
,

with the notations of Propositions 3.3 and 3.4.

Proof. The �rst identity comes from the fact that the two processes (XN (t)) and
(EN (t)) starting from the same initial state are identical in distribution as long as
they do not reach CN . In particular, if XN (0) = EN (0) = x, the variables TENy
and TXNy have the same distribution. The second identity is a direct consequence

of the martingale property of (KN
α (t ∧ TXN0 )) proved in the above proposition. �

4. A Fluid Picture

This section gives a quick description of the �rst-order properties of the Ehren-
fest and Engset processes as N goes to in�nity. Its purpose is mainly to introduce
the three natural possible asymptotic regimes that will be investigated in detail
in the last sections. The proofs of the asymptotic results are quite standard and
therefore will be skipped.

From now on, it is assumed that Relation (2.4) holds, that is

lim
N→+∞

CN/N = η > 0.

The Engset process (XN (t)) can also be seen as the unique solution of the following
stochastic di�erential equation:

dXN (t) = 1{XN (t−)<CN}

N−XN (t−)∑
i=1

Nν,i(dt)−
XN (t−)∑
i=1

Nµ,i(dt),

starting from XN (0), where, for ξ > 0, (Nξ,k) are independent Poisson processes
with rate ξ.

The initial state is assumed to satisfy

lim
N→+∞

XN (0)/N = x0 ∈ [0, η];

then, by complementing Poisson processes in order to get martingales, the above
equation can be rewritten as

dXN (t) = dMN (t) + [ν(N −XN (t))1{XN (t)<CN} − µXN (t)] dt,

where (MN (t)) is a martingale of the order of
√
N . In the same way as for the

Erlang process, see Chapter 6 of Robert [Rob03] for example, one can prove the
following convergence in distribution of processes:

lim
N→+∞

(XN (t)/N) =
(
min(η, ν + (x0 − ν)e−t)

)
.

This �rst-order description of the Engset process shows that there are three di�erent
asymptotic regimes.

� Super-Critical Regime: ν > η.
Under this condition the renormalized process is at the boundary CN at time

(4.1) t∗ := log ((ν − x0)/(ν − η)) .

A more detailed picture can be obtained by looking at the process

(ZN (t)) = (CN −XN (t/N))
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of empty spaces with a �slow� time scale. As N goes to in�nity, is is easily
seen that the Q-matrix of this birth-and-death process converges to the Q-
matrix of an ergodic M/M/1 process with input rate η and service rate ν.
In particular, this gives the asymptotic expression of the Engset formula: for
t ∈ R+,

lim
N→+∞

P(XN (t) = CN ) = 1− η/ν.

� Sub-Critical Regime: ν < η.
In this case, one has

lim
N→+∞

(XN (t)/N) =
(
ν + (x0 − ν)e−t

)
= lim
N→+∞

(EN (t)/N) .

As expected, the boundary at CN does not play a role: at �rst order, the
Engset process and the Ehrenfest process are identical.

� Critical Regime: ν = η.
The �uid limit picture gives that the system saturates �at in�nity� which, as
we shall see, is a too rough description of its evolution.

The next sections are devoted to the asymptotic analysis of the distributions of
hitting times. For simplicity, it is assumed that the initial state is on the boundary,
either 0 or CN . Similar results could be obtained without any additional di�culty
when the initial state is in the neighborhood of some bzNc for 0 ≤ z ≤ η.

5. Super-Critical Regime

As we have seen, under the condition ν > η and at time t∗ de�ned by Equa-
tion (4.1), the system is saturated in the �uid limit. It implies in particular that
the hitting time of the boundary CN ,

TXNCN
= inf{s ≥ 0;XN (s) = CN},

converges in distribution to t∗. The following proposition gives a more precise
asymptotic result. See Theorem 3 of Flajolet and Huillet [FH08] for a related
result in the symmetrical case.

Proposition 5.1. If CN = ηN + O(1), η < ν and XN (0) = 0, then the sequence
of random variables (√

N
[
TXNCN

− log (ν/(ν − η))
])

converges in distribution to a centered normal random variable with variance√
η(1− η)/(ν − η).

Proof. Proposition 3.3 gives the equation

(5.1) E0

(
e
−α
√
NT

XN
CN

)
=

∫ √N
0

(
1− u√

N

)N
u
√
Nα−1 du/∫ √N

0

(
1− u√

N

)N−CN (
1 +

µ

ν

u√
N

)CN
u
√
Nα−1 du,

for α ≥ 0. The integrand of the numerator of the right-hand side of the above
equation can be expressed as exp(fN (u)), with

fN (u) = N log
(

1− u/
√
N
)

+
(√

Nα− 1
)

log u.

The function has a unique maximum at

yN =
α
√
N − 1√

N + α− 1/
√
N

= α− 1 + α2

√
N

+ o
(

1/
√
N
)
,
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and 
fN (yN ) = (α log(α)− α)

√
N − α2

2
− log(α) + o(1),

f
′′

N (yN ) = − (1 + α2)

α2
−
√
N

α
+ o(1).

Laplace's method, see Section 3 of Chapter VIII of Flajolet and Sedgewick [FS09]
for example, gives therefore the relation∫ √N

0

efN (u) du ∼
√

2π√
−f ′′(yN )

efN (yN )(5.2)

∼
√

2πα

N1/4
exp

(
(α log(α)− α)

√
N − α2

2
− log(α)

)
.

Similarly, the integrand of the denominator of the right-hand side of Equation (5.1)
is exp(gN (u)), with

gN (u) = (N − CN ) log

(
1− u√

N

)
+ CN log

(
1 +

µ

ν

u√
N

)
+
(√

Nα− 1
)

log u.

This concave function on the interval (0,
√
N) has a unique maximum at zN =

z0 − δ/
√
N + o(1/

√
N), with

z0 = α
ν

ν − η
and δ = ν

α2
(
ν2 + η − 2ην

)
+ (ν − η)2

(ν − η)
3 ,

and, with some calculations, one �nds

gN (zN ) =

(
−α+ α log(α) + α log

(
ν

ν − η

))√
N

+

(
2νη − ν2 − η

)
(ν − η)

2

α2

2
− log(α)− log

(
ν

ν − η

)
+ o(1)

and

g
′′

N (zN ) = −
(

1− η + η
(1− ν)2

ν2

)
− α
√
N − 1

z2
0

+ o(1).

Again by Laplace's method, this gives

(5.3) exp

(
−α
√
N log

ν

ν − η

)∫ √N
0

egN (u) du

∼
√

2πα

N1/4
exp

(
(α log(α)− α)

√
N +

(
2νη − ν2 − η

)
(ν − η)

2

α2

2
− log(α)

)
.

Equation (5.1) together with (5.2) and (5.3) give �nally

lim
N→+∞

E
(

exp
(
−α
√
N
[
TXNCN

− log(ν/(ν − η))
]))

= exp

(
η(1− η)

(ν − η)2

α2

2

)
.

�

An Informal Proof. The limit theorem obtained in Proposition 5.1 is a conse-
quence of some detailed, annoying, but simple, calculations used to apply Laplace
method. One can get quite quickly an idea of the possible limit with the help of the
exponential martingale (Mβ

N (t)) of Proposition 3.1 through a non-rigorous deriva-
tion. As will be seen, it gives the correct answer but its justi�cation seems to be
di�cult. The main problem comes from the fact that, in this martingale, the term
et stopped at some random time may not be integrable. For example, it is easily
seen that the �rst jump of the martingale (Mβ

1 (t)) is not a regular stopping time
for this martingale, i.e. the optional stopping theorem is not valid here.
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Denote ZN =
√
N
(

exp(TXNCN
)− exp(t∗)

)
, where t∗ is, as before, log(ν/(ν−η)).

By using the martingale (3.2) of Proposition 3.1 by assuming that the stopping time
TXNCN

is regular for it, one gets

E

[(
1− µeT

XN
CN β/

√
N

)CN (
1 + νe

T
XN
CN β/

√
N

)N−CN]
=
(

1 + νβ/
√
N
)N

.

This can be written as E (exp(UN )) = 1, with

UN = CN log

(
1− µeT

XN
CN β/

√
N

)
+ (N − CN ) log

(
1 + νe

T
XN
CN β/

√
N

)
−N log

(
1 + νβ/

√
N
)
,

hence,

UN = −β(η − ν)ZN −
((
ηµ2 + (1− η)ν2

)
e2t∗ − ν2

)
β2/2 + o (1/N)

= −β(η − ν)ZN −
ν2η(1− η)

(ν − η)2
β2/2 + o (1/N) ,

provided that the limit can be taken under the integral. One gets �nally

lim
N→+∞

E
(
e−βZN

)
= exp

(
β2

2

ν2η(1− η)

(ν − η)4

)
.

Expressed as a limit theorem for TXNCN
, this is precisely the above proposition.

6. Sub-Critical Regime

It is assumed in this section that ν < η, so that the Ehrenfest process �lives�
in the interior of the state space; the hitting time of the boundary CN should be
therefore quite large. The following propositions give asymptotic results concerning
this phenomenon.

The �rst result concerns the time it takes from the Ehrenfest process to have all
particles in one box when, initially, they are all in the other box. This is of course
a very natural quantity for this process. In the discrete-time case, representations
of the average of this quantity have been obtained in a symmetrical setting. See
Bingham [Bin91] and Palacios [Pal93] and the references therein.

Proposition 6.1. If ν < 1, XN (0) = 0 and CN = N , then the sequence of ran-

dom variables
(
NνNTXNCN

)
converges in distribution to an exponentially distributed

random variable with parameter 1− ν.

Proof. One uses Equation (3.7) of Proposition 3.3 to get that, for N ≥ 1,

(6.1) E
(
e−αNT

XN
N

)
=

∫ 1

0

(1− u)NuαN−1 du

/∫ 1

0

(
1 +

µ

ν
u
)N

uαN−1 du ,

with αN = αNνN , for some α > 0.
The numerator of this expression can be written, after an integration by parts,

as ∫ 1

0

(1− u)NuαN−1 du =

∫ 1

0

N(1− u)N−1u
αN

αN
du

= N−αN
∫ N

0

(
1− u

N

)N−1 uαN

αN
du ∼ 1

αN
,

by dominated convergence.
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By subtracting 1/αN from the denominator of the right-hand side of Equa-
tion (6.1), one gets

∆N :=

∫ 1

0

((
1 +

µ

ν
u
)N
− 1

)
uαN−1 du =

Nµ

ν

∫ 1

0

(
1 +

µ

ν
u
)N−1 1− uαN

αN
du

=
1

νN

∫ N

0

µ
(

1− µ u
N

)N−1 1− (1− u/N)αN

αN
du,

hence,

αN∆N =
αN
NνN

∫ N

0

µ
(

1− µ u
N

)N−1 1− (1− u/N)αN

αN/N
du

∼ α
∫ +∞

0

µe−µuu du =
α

µ
.

These two asymptotic results plugged into Equation (6.1) give the desired conver-
gence in distribution.

�

Theorem 2 of Bingham [Bin91] provides a similar result in the symmetrical
case µ = ν and in discrete time. In the present case, there is an additional factor N
in the scaling of TXNCN

which is due to the fact that the continuous-time dynamics
are N times faster than the discrete-time case.

Proposition 6.2. If CN = ηN +O(1), ν < η < 1 and XN (0) = 0, then if

H = (1− η) log

(
1− η
1− ν

)
+ η log

(η
ν

)
,

the sequence of random variables

(6.2)

( √
η(1− η)

(η − ν)
√

2π

√
Ne−NH TXNCN

)
,

converges in distribution to an exponentially distributed random variable with pa-
rameter 1.

One remarks that the exponential decay factor H of the above proposition is
in fact a relative entropy of Bernoulli random variables with respective parameters
η and ν. Despite the fact that similar �entropy� expressions appeared on several
occasions in the study of these processes, we have not been able to �nd a simple
explanation for the occurrences of these constants.

Proof. For α > 0, denote by αN the product of α and the coe�cient of TXNCN
in (6.2). Equation (3.7) of Proposition 3.3 is again used
(6.3)

E
(
e−αNT

XN
N

)
=

∫ 1

0

(1−u)NuαN−1 du

/∫ 1

0

(1−u)N−CN
(

1+
µ

ν
u
)CN

uαN−1 du .

The asymptotic behavior of the numerator of this Laplace transform has already
been obtained in the proof of the above proposition.

To study the denominator, we proceed as before. For u ∈ [0, 1], write

fN (u) = (N − CN ) log(1− u) + CN log (1 + µu/ν) .

This function has a unique maximum at

y0 :=
CN/N − ν

1− ν
=

(η − ν)

(1− ν)
+O(1/N),
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given by

fN (y0) =

[
(1− η) log

(
1− η
1− ν

)
+ η log

(η
ν

)]
N + o(1),

and

f ′′N (y0) = − (1− ν)2

η(1− η)
N + o(1).

The denominator of (6.3) is∫ 1

0

[
(1−u)N−CN

(
1+

µ

ν
u
)CN

− 1

]
uαN−1 du =

∫ 1

0

[
efN (u) − 1

]
uαN−1 du

=

∫ 1

0

f ′n(u)efN (u) (yαN0 − uαN )

αM
du+

1− yαN0

αN
,

by integration by parts. The integral IN in the right-hand side can be written as

IN =

∫ (1−y0)
√
N

−y0
√
N

1√
N
f ′N

(
y0 +

u√
N

)
efN (y0+u/

√
N) (yαN0 − (y0 + u/

√
N)αN )

αN
du,

hence,

IN = yαN−1
0

−f ′′N (y0)

N3/2
efN (y0)

∫ +∞

−∞
u2 exp

(
f ′′N (y0)

N

u2

2

)
du+ o(1/N)

=
1

y0

√
2π

−f ′′N (0)
efN (y0) + o(1/N).

Combining,

lim
N→+∞

E
(

exp
(
−αNTXNN

))
= 1/(1 + α).

�

Proposition 6.3 (Hitting time of the empty state). Under the condition ν < η
and if CN = ηN +O(1) for η > 0 and XN (0) = CN , then the sequence of variables(

N(1− ν)NTXN0

)
converges in distribution to an exponential random variable with parameter ν.

Note that this result can, informally, be justi�ed by the result of Proposition 6.1.
Without the boundary CN , one could obtain the result by exchanging µ and ν and
using Proposition 6.1. This result shows in particular that the boundary does not
change the limiting behavior of TXN0 in the sub-critical regime.

Proof. Denote αN = N(1− ν)N . Proposition 3.5 gives

(6.4) ECN
(
e−αNT

XN
0

)
=
dN (αN )BCN (αN ) + bN (αN )DCN (αN )

dN (α)B0(αN ) + bN (αN )D0(αN )
.

One starts with the asymptotic behavior of (dN (αN )):

dN (αN ) = µ

∫ 1

0

(1− u)
N−CN−1

(
1 +

µ

ν
u
)CN

uαN du

=
µ√
N

∫ √N
0

(
1− u√

N

)N−CN−1(
1 +

µ

ν

u√
N

)CN
du+ o

(
1/
√
N
)

=
1√
N

exp

(
η − ν
ν

√
N

)∫ +∞

0

exp

(
−
(
η

ν2
+

(1− η)

(1− ν)2

)
u2

2

)
du+ o

(
1/
√
N
)
.
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The other coe�cient bN (αN ) is such that

bN (αN ) = ν

∫ 1

0

(1− u)CN
(

1 +
ν

µ
u

)N−CN
uαN du

=
ν

N

∫ N

0

(
1− u

N

)CN (
1 +

ν

µN
u

)N−CN−1

du+ o (1/N)

=
ν(1− ν)

ν − η
1

N
+ o (1/N) .

The proof of Proposition 6.1 provides the relations

D0(αN ) =

∫ 1

0

(1− u)NuαN−1 du ∼ 1

αN

and

B0(αN ) =

∫ 1

0

(
1 +

ν

µ
u

)N
uαN−1 du ∼ 1

αN
+

1

νN(1− ν)N
.

The two remaining terms to estimate are

BCN (αN ) =

∫ 1

0

(1− u)CN
(

1 +
ν

µ
u

)N−CN
uαN−1 du,

DCN (αN ) =

∫ 1

0

(1− u)N−CN
(

1 +
µ

ν
u
)CN

uαN−1 du.

As in the proof of Proposition 6.2, one can show that BCN (αN ) and DCN (αN ) can
be written as 1/αN + o (B0(αN )− 1/αN )). More informally, the term (1 − u)N ·

under the integral for these two expressions reduces their asymptotic behavior by
an exponential factor.

These various estimates give �nally that

lim
N→+∞

E
(
e−αNT

XN
0

)
= lim
N→+∞

BCN (αN )

B0(αN )
=

1

1 + α/ν
.

�

7. Critical Regime

In this section, it is assumed that CN ∼ νN , if XN (0) = 0, the �uid limit
of the process is given by ν(1 − exp(−t)), the �uid boundary ν is reached at time
t = +∞. In fact, with a second-order description, the process XN (t) can be written
as XN (t) ∼ ν(1− exp(−t))N + Y (t)

√
N for some ergodic di�usion process (Y (t)),

so the hitting time TXNCN
of the boundary is such that

exp
(
−TXNCN

)
∼
Y (TXNCN

)

ν
√
N

,

which gives a rough estimate TXNCN
∼ log(

√
N). The following proposition shows

that this approximation is fact quite precise. See also Theorem 4 of Flajolet and
Huillet [FH08].

Proposition 7.1. If CN = νN+δ
√
N+o(

√
N) with ν < 1, δ ∈ R, and XN (0) = 0,

then the sequence of random variables(
TXNCN

− log(N)/2
)

converges in distribution to a random variable Z on R whose Laplace transform at
α > 0 is given by:

(7.1) E
(
e−αZ

)
= Γ(α)

/∫ +∞

0

exp

(
u
δ

ν
− u2

2

(1− ν)

ν

)
uα−1 du.
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If δ = 0, then the variable Z − log (ν/(1− ν)) /2 has the following density on R:

x 7→
√

2/π exp
(
−x− e−2x/2

)
.

Note that the Laplace transform of the limit in distribution is the ratio of the Mellin
transforms of the functions

u 7→ exp(−u) and u 7→ exp

(
−u δ

ν
− u2

2

(1− ν)

ν

)
.

See Section B.7 of Flajolet and Sedgewick [FS09] on Mellin transforms.

Proof. Proposition 3.3 gives the equation

E0

(
e
−αTXNCN

)
=

∫ 1

0

(1− u)
N
uα−1 du

/∫ 1

0

(1− u)
N−CN

(
1 +

µ

ν
u
)CN

uα−1 du,

for α > 0. The asymptotic behavior of the numerator is easy since∫ 1

0

(1− u)
N
uα−1 du =

1

Nα

∫ N

0

(
1− u

N

)N
uα−1 du ∼ Γ(α)

Nα
.

The denominator can be expressed as

1

Nα/2

∫ √N
0

efN (u)uα−1 du,

with

fN (u) = (N − CN ) log

(
1− u√

N

)
+ CN log

(
1 +

µ

ν

u√
N

)
= − (1− ν)

ν

u2

2
+
δ

ν
u+ o(1/

√
N).

By dominated convergence, one gets therefore that, for α > 0,

lim
N→+∞

E0

(
e
−α

[
T
XN
CN
−logN/2

])
= Γ(α)

/∫ +∞

0

exp

(
− (1− ν)

ν

u2

2
+
δ

ν
u

)
uα−1 du,

and hence the �rst part of the proposition.
For δ = 0, a change of variable gives∫ +∞

0

exp

(
−u

2

2

(1− ν)

ν

)
uα−1 du =

1

2

(
2ν

1− ν

)α/2
Γ(α/2).

The Laplace transform of Z can therefore be expressed as

E
(
e−αZ

)
= 2

(
1− ν

2ν

)α/2
Γ(α)

Γ(α/2)
=

(
1− ν
ν

)α/2
2α/2√
π

Γ((α+ 1)/2),

by using Legendre's duplication Formula for Gamma functions (see e.g. Whittaker
and Watson [WW96] page 240). Since

2α/2√
π

Γ

(
α+ 1

2

)
=

1√
π

∫ +∞

0

exp (α log(2u)/2− log(u)/2− u) du

=

√
2

π

∫ +∞

−∞
e−αu exp

(
−u− e−2u/2

)
du,

with a change of variables, one gets the desired result on the distribution of Z. �

We conclude with the hitting time of empty state. We remark that, at the
correct time scale, the time is half of the corresponding variable in the sub-critical
case. See Proposition 6.3. A simple, naive, explanation is as follows. For sub-critical
regime the process lives in a region centered at νN and whose width is of the order
of
√
N and therefore makes many excursions in this region before reaching CN . In
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the critical case the process lives near, but only on one side of νN . In particular it
cannot go above CN and, consequently, does not waste time on such excursions.

Proposition 7.2 (Hitting Time of Empty State). If CN = νN+o(
√
N) with ν > 0

and XN (0) = CN , then the sequence of random variables(
N(1− ν)NTXN0

)
converges in distribution to an exponential random variable with parameter 2ν.

Proof. Denote αN = N(1− ν)N . Recall that

ECN
(
e−αNT

XN
0

)
=
dN (α)BCN (α) + bN (α)DCN (α)

dN (α)B0(α) + bN (α)D0(α)
.

One starts with the asymptotic behavior of (dN (αN )). By de�nition,

dN (αN )=µ

∫ 1

0

(1− u)N−CN−1
(

1 +
µ

ν
u
)CN

uαN du

= µ
1√
N

∫ √N
0

(
1− u√

N

)N−CN−1(
1 +

µ

ν

u√
N

)CN
du+ o

(
1/
√
N
)
.

Since η = ν and µ = 1− ν, ν(1− η) = µη, so

dN (αN ) = (1− ν)
1√
N

∫ +∞

0

exp

(
− (1− ν)

ν

u2

2

)
du+ o

(
1/
√
N
)

=
1√
N

√
π

2

√
ν(1− ν) + o

(
1/
√
N
)
.

Note that, up to a term −1 in an exponent which does not play a role in the
limiting behavior, the quantity bN (α) is almost dN (α) with ν replaced by (1− ν).
Consequently bN (α) has the same asymptotic expansion as dN (α).

The asymptotic behaviors of the quantities B0(αN ), D0(αN ), BCN (αN ) and
DCN (αN ) are the same as those obtained in the proof of Proposition 6.3. By
gathering these various estimates one �nds

lim
N→+∞

E
(

exp
(
−αNTXN0

))
= 2/(2 + α/ν).

�
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