
Law of the Jungle in a
Linear Network

Mathieu Feuillet

RAP, INRIA Rocquencourt, France

November 20, 2009

Joint work with Thomas Bonald (Orange) and Alexandre Proutière
(MSR)



Introduction

I Congestion control
I Avoidance of packet loss
I Adaptation of the throughput according to packet loss

I No Congestion control
I No avoidance of packet loss
I Sources send at their maximum rate: the access rate
I Recovery mechanism from packet loss (source coding)

Is that sustainable? Is there any congestion collapse?
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Law of the Jungle

Stability of a linear network

Theorem of anarchy



Flow Model

Congestion control model introduced by Massoulié and

Roberts in 2000.

I Network modeled at a �ow level, not a packet level

I Flows are going in the network like a �uid

I Users divided in classes to model heterogeneity of the
tra�c

I Dynamic tra�c

I Resource allocation determined by congestion policy



Linear Network
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I Two links of capacity 1

I 3 classes of �ows
I Class 0 going through both links with access rate 1
I Class 1 going through link 1 with access rate 1
I Class 2 going through link 2 with access rate a

I Flow generation rates: λi (�ows/sec)

I Flow size rates: µi (bits
−1)

I Tra�c intensities: ρi = λi/µi (bits/sec)



Resource allocation

Congestion control

I Bandwidth allocation determined by Congestion control
algorithm

I Input rate is equal to output rate

I Well studied examples: α-fair allocations (proportional
fairness, max-min fairness) (Mo and Walrand 2000)



Resource allocation

No congestion control

I Sources send at their maximum rate in the network

I Bandwidth allocation determined by bu�er policy in the
routers

I Output rate is di�erent of input rate

I Fair policy: Fair Dropping (Shenker et al 98)

I Simplest policy: Tail Dropping (Law of the Jungle)



Resource allocation

Tail dropping:

I Sources send at their maximum rate

I At each link, output rates are proportional to input rates
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Markov Process (Summary)
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We study the Markov process describing the number of �ows
in each class:

(N0(t),N1(t),N2(t))

with transition rates :

n 7→ n + ei : λi

n 7→ n − ei : µiφi(n)



Performance metrics

I Mean �ow response time
I Ergodicity condition

I Optimal performance
I The network can be stabilized if and only if

∀l
∑
i :l∈ri

ρi < Cl

I α-fair policies are optimal (Bonald and Massoulié

2001, de Veciana et al 2001)
I Fair dropping is optimal (Bonald et al 2009)
I Tail Dropping is not optimal



Law of the Jungle

Stability of a linear network

Theorem of anarchy



Stability of class 2
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We have 0 ≤ α ≤ 1. Thus, class 2 is stable if ρ2 < 1 and
transient if ρ2 > 1 whatever the conditions on 0 and 1.
Now, we suppose that

ρ2 < 1



Stability of class 2
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We freeze the number of �ows in classes 0 and 1 and then α.
There is a stationary distribution πα for class 2.
We then de�ne the averaged throughput of class 0:

φ̄0(α) =
∑
n2∈N

πα(n2)min

(
α,

α

n2a + α

)



Fluid limit of the system
Class 2 is stable, so there is no need to scale it! We perform
the scaling only on classes 0 and 1:

(N0(0),N1(0)) = nk , lim
k→∞
‖nk‖ =∞,

lim
k→∞

1

‖nk‖
(N0(‖nk‖t),N1(‖nk‖t))

d
= (z0(t), z1(t))

and (z0(t), z1(t)) satis�es:

ż0(t) = λ0 − µ0φ̄0
(

z0(t)

z0(t) + z1(t)

)
ż1(t) = λ1 − µ1

z1(t)

z0(t) + z1(t)

The proof is similar to the one of Hunt and Kurtz in 1994
about Loss Networks.



Fluid Limit of the system
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There is a separation of time scale between the �uid limit
(z0, z1) and class 2: class 2 is always at equilibrium and there
is an averaging on class 2 for �uid limit z0.



Fluid Limit dynamics
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Stability Conditions
The exact conditions for stability under the Law of the Jungle
are:

ρ1 < 1, ρ2 < 1,

ρ0 < φ̄0(1− ρ1)

The optimal stability conditions are:

ρ1 < 1, ρ2 < 1,

ρ0 < min(1− ρ1, 1− ρ2)

But:
φ̄0(1− ρ1) < min(1− ρ2, 1− ρ1)

The stability conditions are not optimal!
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What is the anarchy?

The price of anarchy quanti�es how far the stability conditions
are from optimal ones.
In our case, the de�nition is simply:

P(a) = max
ρ1,ρ2

(
min(1− ρ1, 1− ρ2)− φ̄0(1− ρ1)

)
The price of anarchy depends on a, the access rate of class 2.



Theorem of anarchy

ρ1

φ̄0(1− ρ1)

1

1

1− ρ2

a = 1
a = 0.1
a = 0.01
a→ 0 : min(1− ρ1, 1− ρ2)

Theorem:
lim
a→0

P(a) = 0

For any (ρ0, ρ1, ρ2) satisfying the optimal stability conditions,
there exists a small enough such that the network is stable.



Conclusion

I Do we need congestion control in the Internet?

I Evaluation of the impact of big clients on the network
(optical networks).

I A �uid limit with an interesting averaging phenomenon

I Can be extended to linear networks with more than two
links

I In other contexts?

I Conjecture: The theorem of anarchy is true in acyclic
networks.
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