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» Congestion control

» Avoidance of packet loss
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» No Congestion control

» No avoidance of packet loss
» Sources send at their maximum rate: the access rate
» Recovery mechanism from packet loss (source coding)

Is that sustainable? Is there any congestion collapse?



Law of the Jungle



Flow Model

Congestion control model introduced by Massoulié and
Roberts in 2000.

» Network modeled at a flow level, not a packet level

» Flows are going in the network like a fluid

v

Users divided in classes to model heterogeneity of the
traffic

Dynamic traffic

v

v

Resource allocation determined by congestion policy



Linear Network
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1

v

Two links of capacity 1
3 classes of flows

v

» Class 0 going through both links with access rate 1
» Class 1 going through link 1 with access rate 1
» Class 2 going through link 2 with access rate a

v

Flow generation rates: \; (flows/sec)

v

Flow size rates: p; (bits™)
Traffic intensities: p; = \;/u; (bits/sec)

v



Resource allocation

Congestion control

» Bandwidth allocation determined by Congestion control
algorithm

» Input rate is equal to output rate

» Well studied examples: a-fair allocations (proportional
fairness, max-min fairness) (Mo and Walrand 2000)



Resource allocation

No congestion control

Sources send at their maximum rate in the network

v

v

Bandwidth allocation determined by buffer policy in the
routers

v

Output rate is different of input rate

v

Fair policy: Fair Dropping (Shenker et al 98)

v

Simplest policy: Tail Dropping (Law of the Jungle)



Resource allocation

Tail dropping:
» Sources send at their maximum rate

» At each link, output rates are proportional to input rates
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Resource allocation

Tail dropping:
» Sources send at their maximum rate
» At each link, output rates are proportional to input rates
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Markov Process (Summary)

0
1 2

We study the Markov process describing the number of flows
in each class:

(No(t), Na(t), Na(t))

with transition rates :

n—n+e A\

n—n—e;:. p,-gb,-(n)



Performance metrics

» Mean flow response time
» Ergodicity condition
» Optimal performance
» The network can be stabilized if and only if

V/Zp,‘<Cl

i:Ier,-

» a-fair policies are optimal (Bonald and Massoulié
2001, de Veciana et al 2001)

» Fair dropping is optimal (Bonald et al 2009)

» Tail Dropping is not optimal



Stability of a linear network



Stability of class 2
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We have 0 < a < 1. Thus, class 2 is stable if p, < 1 and
transient if p, > 1 whatever the conditions on 0 and 1.
Now, we suppose that

p2 <1



Stability of class 2

«
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¢o = min(a, )
n

¢2 = min(nya, O‘iznaza)

We freeze the number of flows in classes 0 and 1 and then a.
There is a stationary distribution 7 for class 2.
We then define the averaged throughput of class 0:

dufe) = X 7 (m)min (a2 )

neN




Fluid limit of the system

Class 2 is stable, so there is no need to scale it! We perform
the scaling only on classes 0 and 1:

(No(0), M(0)) = e, im ]| = oo,

Jim s (Na(lme ) M) < (). (9

and (z(t), z1(t)) satisfies:

20(t) = Ao — oo (&)

z0(t) + z1(t)
Zl(t)

2(t) =M\ — Mlm

The proof is similar to the one of Hunt and Kurtz in 1994
about Loss Networks.



Fluid Limit of the system

There is a separation of time scale between the fluid limit
(20,21) and class 2: class 2 is always at equilibrium and there
is an averaging on class 2 for fluid limit z,.



Fluid Limit dynamics
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Fluid Limit dynamics
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Fluid Limit dynamics
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(2(t) (20(2), z1(2))

z1
\l / 20221 =N

(20(t), z1(2))

20

po < do(1— p1)



Fluid Limit dynamics
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Stability Conditions

The exact conditions for stability under the Law of the Jungle
are:

p <1, pp<l,
po < do(1— p1)
The optimal stability conditions are:
p1 < 17 P2 < 17
po < min(l—py,1— po)

But: B
¢o(1 — p1) < min(1 = p2,1 — p1)

The stability conditions are not optimal!



Theorem of anarchy



What is the anarchy?

The price of anarchy quantifies how far the stability conditions
are from optimal ones.
In our case, the definition is simply:

P(a) = max (min(l —p1,1—po) — Qf;o(l - Pl))

P1,02

The price of anarchy depends on a, the access rate of class 2.



Theorem of anarchy

do(1 — p1)
—a=1
1 —a=0.1
—a=20.01 .
—a—0:min(1—p1,1—py)
1—p2 |
P1
1
Theorem:
lim P(a) =0

a—0

For any (po, p1, p2) satisfying the optimal stability conditions,
there exists a small enough such that the network is stable.



Conclusion

v

Do we need congestion control in the Internet?

v

Evaluation of the impact of big clients on the network
(optical networks).

v

A fluid limit with an interesting averaging phenomenon

Can be extended to linear networks with more than two
links

v

In other contexts?

v

v

Conjecture: The theorem of anarchy is true in acyclic
networks.
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