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Introduction



Modeling

Network
Traffic Performance

Objectives:
- Modeling
- Design
- Dimensioning
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What Are We Talking About?

- In a distributed storage system with failures,
what is the life expectancy of a file?

- Does the Internet collapse if users are selfish
and don’t use congestion control?

- Does CSMA/CA, as used in WiFi, ensure
efficient use of bandwidth?
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Modeling



Modeling

Network
Traffic Performance

Objectives:
- Modeling
- Design
- Dimensioning

Tools:
- Markov processes
- Queueing models
- Scaling methods
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Stochastic Models

State: (X(t)) a Markov jump process in Nd:

- Number of files,

- Number of active flows in the Internet,

- Number of messages to be transmitted.

Markov assumptions:
- Poisson arrivals

- Exponentially distributed sizes/durations.
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Stochastic Models

State: (X(t)) a Markov jump process in Nd:

- generally, non-reversible,

- when ergodic, invariant distribution not known,

- results on transient properties are rare (for
d ≥ 2).
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Scaling Methods



Scaling Methods

Principle: N a scaling parameter
Analyze the evolution of the sample path of

�

XN(ΨN(t))

ΦN

�

as N→∞, for some convenient (ΨN(t)) and (ΦN).

Time scale t→ ΨN(t) is used as a tool to focus on
some specific part of sample paths.

There may be more than one time scale of
interest!
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Scaling Methods: Goals

Give a First order description of (XN(t)):

XN(ΨN(t)) ≈ ΦN.x(t)

where,
(x(t)) is a simpler stochastic process or even a
deterministic dynamical system:

ẋ(t) = F(x(t))
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Classical Example: Fluid Limit

�

X̄(t)
�

=

�

X(Nt)

N

�

, with N = ‖X(0)‖.

Scaling parameter: initial state

Time scale: t 7→ Nt

Fluid limit reaches 0
⇓

Process is stable
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Example: Fluid Limit of M/M/1 Queue
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Example: Fluid Limit of M/M/1 Queue
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Technical Corner
Proof of the tightness of the scaled process

�

XN (ΨN(t))

ΦN

�

- Stochastic Differential Equation representation
of (XN(t)) with martingales

- Standard tightness criteria

Difficulties:
- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Each example has its specific difficulties
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Stochastic Averaging



A Deterministic Example
Deterministic sequences (xN(t)) and (yN(t)) with:

ẋN(t) = NF(xN(t)),

Fast time-scale

ẏN(t) = G(xN(t),yN(t))

Slow time-scale

Fast time-scale:

ẋN(t/N) = F(xN(t/N)).

Slow time-scale: If x(t) tends to a fixed point x?:
(yN(t)) converges to (y(t)) with

ẏ(t) = G(x?,y(t))
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Stochastic vs Deterministic

Deterministic Stochastic

Fast process ODE Markov process
(x(t)) (X(t))

ẋ = F(x(t),y) Ω(y)

Slow process ODE Markov process
(y(t)) (Y(t))

Equilibrium
Fixed point Stationary

x?
y

distribution
πy

Convergence Regularity of Regularity of
y 7→ x?

y
y 7→ πy
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Contributions
The Law of the Jungle:

- Stochastic averaging

- Scaling over the stationary distributions

Flow-Aware CSMA:
- Suboptimality of CSMA (mono/multi-channel)
- Optimality of Flow-Aware CSMA (mono/multi)
- Time-scale separation

An unreliable file system:
- Three time-scales
- Stochastic averaging (simpler proof)

Transient properties of Engset and Ehrenfest:
- Positive martingales
- Asymptotics on hitting times
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Example 1:

An Unreliable File System
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Model
Xi(t) : number of files with i copies at time t.

(X0(t),X1(t),X2(t)): a transient Markov Process.

X0(t) +X1(t) +X2(t) = βN.

A unique absorbing state (βN,0,0).

(X0(t)) (X1(t)) (X2(t))

μx1 λN1{x1>0}

2μx2

2μ(βN− x0 − x1)

25
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Different Behaviors

Three time scales:






t → t/N

t → t

t → Nt

Three regimes:

Overload: 2β > ρ = λ/μ,
Critical load: 2β = ρ,
Underload: 2β < ρ.

26



Time scale: t→ t/N

(X0(t/N)) (X1(t/N)) (X2(t/N))

μ
x1

N

λ1{x1>0}

2μ

N
(βN− x1 − x0)
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Time scale: t→ t/N

(L1(t)): an M/M/1 queue

¨

ergodic if 2β < ρ,

transient if 2β > ρ.

0 (L1(t)) ∼ Nβ

λ1{x1>0}

2μβ

No loss!

28



Time scale: t→ t/N

(L1(t)): an M/M/1 queue

¨

ergodic if 2β < ρ,

transient if 2β > ρ.

0 (L1(t)) ∼ Nβ

λ1{x1>0}

2μβ

No loss!

28



Time scale: t→ t
Overloaded network

If 2β > ρ, (X0(t)/N,X1(t)/N,X2(t)/N) converges to a
deterministic process (x0(t),x1(t),x2(t)).

λ
2μ

β

t

x2(t) : 2 copies
x1(t) : 1 copy
x0(t) : 0 copies

A fraction N(β− ρ/2) is lost!

29



Time scale: t→ t
Overloaded network

If 2β > ρ, (X0(t)/N,X1(t)/N,X2(t)/N) converges to a
deterministic process (x0(t),x1(t),x2(t)).

λ
2μ

β

t

x2(t) : 2 copies
x1(t) : 1 copy
x0(t) : 0 copies

A fraction N(β− ρ/2) is lost!

29



Time scale: t→ t
Underloaded network

If 2β < ρ, (X0(t)/N,X1(t)/N,X2(t)/N) converges to






x0(t) = 0,
x1(t) = 0,
x2(t) = β.

λ
2μ

β

t

x2(t) : 2 copies

No significant loss!
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Time Scale t→ Nt

lim
N→+∞

�

X0(Nt)

N

�

= Ψ(t),

where Ψ(t) is the unique solution of

Ψ(t) = μ

∫ t

0

2μ(β−Ψ(s))

λ− 2μ(β−Ψ(s))
ds.

β

t
0 copies

t→ Nt is the “correct” time scale to describe
decay.
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Time Scale t→ Nt

lim
N→+∞

�

X0(Nt)

N

�

= Ψ(t),

where Ψ(t) unique solution in (0, β) of

(1−Ψ(t)/β)ρ/2 eΨ(t)+t = 1.

β

t
0 copies

t→ Nt is the “correct” time scale to describe
decay.
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A Stochastic Averaging Phenomenon

∼ NΨ(t) X1,t(∞)

∼ N(β−Ψ(t))

Fast time scale: At “time” Nt,
(X1(Nt+u/N),u ≥ 0): an M/M/1 with transition rates:

+1 at rate 2μ(β−Ψ(t))

−1 at rate λ.
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A Stochastic Averaging Phenomenon

∼ NΨ(t) X1,t(∞)

∼ N(β−Ψ(t))

Slow time scale: (X0(Nt)/N) “sees” only X1 at equi-
librium:

Ψ(t)” = ”μ

∫ t

0
E(X1,s(∞)) ds =

∫ t

0

2μ(β−Ψ(s))

λ− 2μ(β−Ψ(s))
ds.

32



Technical Corner
Step 1 Radon measures: tightness of (μN) with

〈μN,g〉 =
1

N

∫ Nt

0
g
�

XN1 (s), s
�

ds

Step 2 Control of limits of (μN):

lim
N→∞

1

N

∫ Nt

0
XN1 (s) ds = Ψ(t) =

∫ t

0
〈πs, I〉ds

∫ t

0
πs(N) ds = t

Here: Proof by stochastic domination
Step 3 Identification of πs with martingale
techniques and balance equations.
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Decay Rate of the Network

TN(δ) = inf
¦

t ≥ 0 : XN0 (t) ≥ δβN
©

Theorem:

lim
N→∞

TN(δ)

N
= −

ρ

2
log(1− δ)− δβ.

δ

T
N

(δ
)/
N

34



Conclusion

- Three different time scales

- A first example of stochastic averaging

- Asymptotics on a transitory property.

Extensions:
- Number of copies: d > 2⇒ d− 1 times scales

- Decentralized back-up (mean-field)

Open problem:
- Modeling a DHT: geometrical considerations
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Example 2:

The Law of the Jungle



Context

Congestion control:
- Rate adjustment to limit packet loss
- Retransmission of lost packets

No congestion control:
- No rate adjustment
- Sources send at their maximum rate
- Coding to recover from packet loss

Does this bring congestion collapse?
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Bandwidth Sharing Networks
[Massoulié Roberts 00]

1

0

2

λ1

λ0

λ2
μ1ϕ1

μ0ϕ0

μ2ϕ2

- A flow: a stream of packets

- Flows are considered as a fluid

- Users divided in classes/routes

- Poisson arrivals/Exponential sizes

- Resource allocation determined by congestion
policy

38
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Resource Allocation

Usually, α-fair policies are considered [MW00].

Here:
- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are

proportional to input rates

x1

x0

x2

ϕ1 = x1
x0+x1

α = x0
x0+x1

ϕ0 = min
�

α, α
x2a+α

�

ϕ2 = min
�

x2a,
x2a

α+x2a

�

39
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Usually, α-fair policies are considered [MW00].

Here:
- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are

proportional to input rates
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Ergodicity Condition

1

0

2

Optimal ergodicity condition:

ρ0 + ρ1 < 1, ρ0 + ρ2 < 1

where ρi = λi/μi.

We know α-fair policies are optimal [BM02].

What about our policy?
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Fluid Limits

x2

ϕ0 = min
�

α, α
x2a+α

�

ϕ2 = min
�

x2a,
x2a

α+x2a

�

ϕ1 = x1
x0+x1

α = x0
x0+x1

x1

x0

If x2� 0, class 2 uses virtually all the second link.
If (z0(t), z1(t), z2(t)) is a fluid limit with z2(0) > 0,







ż0(t) = λ0,

ż1(t) = λ1 − μ1
z1(t)

z0(t)+z1(t) ,

ż2(t) = λ2 − μ2.

If ρ2 < 1, (z2(t)) reaches 0 in finite time.
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ż1(t) = λ1 − μ1
z1(t)

z0(t)+z1(t) ,
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Fluid Limits

x2

ϕ0 = min
�

α, α
x2a+α

�

ϕ2 = min
�

x2a,
x2a

α+x2a

�

x1

x0

ϕ1 = x1
x0+x1

α

Classes 0 and 1 are frozen:
πα2 is the stationary distribution of class 2

Φ̄0(α) = Eπα2

�

Φ0

�

α,
α

x2a+ α

��

.
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Fluid Limits
When z2(t) = 0:























ż0(t) = λ0 − μ0ϕ̄0

�

z0(t)

z0(t) + z1(t)

�

,

ż1(t) = λ1 − μ1
z1(t)

z0(t) + z1(t)
,

ż2(t) = 0.

with

Φ̄0(α) = Eπα2

�

Φ0

�

α,
α

x2a+ α

��

.

Stochastic averaging
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Ergodicity Conditions
Ergodicity conditions:

ρ1 < 1, ρ2 < 1,

ρ0 < ϕ̄0(1− ρ1)

Optimal conditions:

ρ1 < 1, ρ2 < 1,
ρ0 < min(1− ρ1,1− ρ2)

But:
ϕ̄0(1− ρ1) < min(1− ρ2,1− ρ1)

Not optimal!
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Impact of Maximum Rate a

Class 1: ρ1

C
la

ss
0

:
ρ

0

Optimal
a = 1
a = 0.1
a = 0.01

What happens when a→ 0 ?
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Scaling the Maximum Rate a
We freeze α and consider the process (XS2(t)) with
Q-matrix:

q(x2,x2 + 1) = λ2,

q(x2,x2 − 1) = μ2 min

�

x2a,
x2a

/S

α + x2a

/S

�

Time-scale: t 7→ St

(XS2(St)/S)⇒ (x2(t)) with

ẋ2(t) = λ2 − μ2 min

�

ax2(t),
x2(t)a

α + x2(t)a

�

Fixed point:

x2 =
ρ2

a
max

�

1,
α

1− ρ2

�
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Scaling the Maximum Rate a

(XS
2

(St)/S)
t→∞−−→ XS

2
(∞)/S

S→∞





y





y
S→∞

(x2(t)) −−→
t→∞

x2(∞)

Convergence of processes
⇓

Convergence of stationary distribution

lim
a→0

Φ̄0(1− ρ1) = min(1− ρ1,1− ρ2)

The policy is asymptotically optimal
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Conclusion
- Analysis of equilibrium,

- Inversion of limits: scaling on stationary
distributions

- Impact of access rates

Extensions:
- Linear networks with L links

- Second order scaling: speed of convergence.

- Upstream trees

Open problem:
- General acyclic networks

48



Example 3:

Flow-Aware CSMA



Model
The network is represented by a conflict graph

1 2 3

wireless link potential interference

For each node i:
- Xi(t) ∈ N: number of flows at time t
- Yi(t) = 1 if node is active at time t, 0 otherwise.
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Conflict Graph

1 2 3

λ1 λ2 λ3

μ1 μ2 μ3

1 2 3

Schedules: ∅, {1}, {2}, {3}, {1,3}.

Optimal stability region: convex hull of schedules
In this example: {ρ1 + ρ2 ≤ 1, ρ2 + ρ3 ≤ 1}
with ρi = λi/μi

Stability region?
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Standard CSMA

∼ exp(α)

Back-off
∼ exp(1)

Transmission
∼ exp(α)

Back-off

Optimal?

1 2 3

ρ1 ρ2 ρ3

0 0.5 1
0

0.5

1

ρ1 = ρ3

ρ
2

Optimal
Actual
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Flow-Aware CSMA
Proposed modification of CSMA:

Exponential backoff time for each flow

∼ exp(αx1)

Back-off
∼ exp(1)

Transmission
∼ exp(αx1)

Back-off

The process (X(t),Y(t)) is difficult to analyze:

Idea: Separate network dynamics and flow
dynamics.
When N→∞, (YN(t)): classical loss network.

Stochastic averaging
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Optimality of Flow-Aware CSMA

Theorem:
Flow-aware CSMA algorithm is optimal for any
network.

Sketch of proof:
- Asymptotically behaves as Max-Weight.

- Deduce a Lyapunov function and apply
Foster’s criterion.
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Conclusion

- An optimal and fully distributed channel
access mechanism

- Limiting process: jump process

- Simplification of the problem

Extension:
- Multi-channel

Open problem:
- Initial problem still open
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General Conclusion
Three examples:

- Capacity of an unreliable file system

- Law of the Jungle

- Flow-Aware CSMA

Mathematical tools:
- Several examples of scalings

- A simpler proof for stochastic averaging

and. . .
- Scalings: A set of powerful tools

- Stochastic averaging: a not so rare
phenomenon

Many interesting open questions. . .
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Thank you!
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