

Bandwidth Allocation in Large Stochastic Networks

Mathieu Feuillet

Soutenance de thèse

12/07/2012

Introduction

Modeling

Network

Objectives:

- Modeling
- Design
- Dimensioning

What Are We Talking About?

- In a distributed storage system with failures, what is the life expectancy of a file?

- Does the Internet collapse if users are selfish and don't use congestion control?

- Does CSMA/CA, as used in WiFi, ensure efficient use of bandwidth?

Contents

Mathematical tools Modeling Scaling methods Stochastic averaging Examples

Unreliable File System

The Law of the Jungle

Flow-Aware CSMA

Modeling

Modeling

Network

Objectives:

- Modeling
- Design
- Dimensioning

Tools:

- Markov processes
- Queueing models
- Scaling methods

Stochastic Models

State: (X(t)) a Markov jump process in \mathbb{N}^d :

- Number of files,
- Number of active flows in the Internet,
- Number of messages to be transmitted.

Stochastic Models

State: (X(t)) a Markov jump process in \mathbb{N}^d :

- Number of files,
- Number of active flows in the Internet,
- Number of messages to be transmitted.

Markov assumptions:

- Poisson arrivals
- Exponentially distributed sizes/durations.

Stochastic Models

State: (X(t)) a Markov jump process in \mathbb{N}^d :

- generally, non-reversible,
- when ergodic, invariant distribution not known,
- results on transient properties are rare (for $d \ge 2$).

Scaling Methods

Scaling Methods

Principle: *N* a scaling parameter Analyze the evolution of the sample path of

 $\left(\frac{X^N(\Psi_N(t))}{\Phi_N}\right)$

as $N \to \infty$, for some convenient $(\Psi_N(t))$ and (Φ_N) .

Time scale $t \rightarrow \Psi_N(t)$ is used as a tool to focus on some specific part of sample paths.

Scaling Methods

Principle: *N* a scaling parameter Analyze the evolution of the sample path of

 $\left(\frac{X^N(\Psi_N(t))}{\Phi_N}\right)$

as $N \to \infty$, for some convenient $(\Psi_N(t))$ and (Φ_N) .

Time scale $t \rightarrow \Psi_N(t)$ is used as a tool to focus on some specific part of sample paths.

There may be more than one time scale of interest!

Scaling Methods: Goals

Give a First order description of $(X^N(t))$:

 $X^N(\Psi_N(t)) \approx \Phi_N.x(t)$

where,

(x(t)) is a simpler stochastic process or even a deterministic dynamical system:

 $\dot{x}(t) = F(x(t))$

Classical Example: Fluid Limit

$$\left(ar{X}(t)
ight) = \left(rac{X(Nt)}{N}
ight)$$
, with $N = \|X(0)\|$.

Scaling parameter: initial state

Time scale: $t \mapsto Nt$

Classical Example: Fluid Limit

$$\left(ar{X}(t)
ight) = \left(rac{X(Nt)}{N}
ight)$$
, with $N = \|X(0)\|$.

Scaling parameter: initial state

Time scale: $t \mapsto Nt$

References

Fluid limits for queueing systems: [Malyshev 93] [Rybko-Stolyar 92] [Dai 95]

Scaling methods:

[Khasminskii 56] [Freidlin-Wentzell 79] [Ethier-Kurtz 86] [Robert 03]

Proof of the tightness of the scaled process $\left(\frac{X^{N}(\Psi_{N}(t))}{\Phi_{N}}\right)$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Proof of the tightness of the scaled process $\left(\frac{X^{N}(\Psi_{N}(t))}{\Phi_{M}}\right)$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Difficulties:

- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Proof of the tightness of the scaled process $\left(\frac{X^{N}(\Psi_{N}(t))}{\Phi_{M}}\right)$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Difficulties:

- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Technical Corner Proof of the tightness of the scaled process $\left(\frac{X^{N}(\Psi_{N}(t))}{\Phi_{N}}\right)$

- Stochastic Differential Equation representation of $(X^N(t))$ with martingales
- Standard tightness criteria

Difficulties:

- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Each example has its specific difficulties

Stochastic Averaging

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

 $\dot{x}_N(t) = NF(x_N(t)),$ $\dot{y}_N(t) = G(x_N(t), y_N(t))$

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

 $\dot{x}_N(t) = NF(x_N(t)),$ $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Fast time-scale Slow time-scale

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

 $\dot{x}_N(t) = NF(x_N(t)),$ $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Fast time-scale Slow time-scale

Fast time-scale:

 $\dot{x}_N(t/N) = F(x_N(t/N)).$

Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

 $\dot{x}_N(t) = NF(x_N(t)),$ $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Fast time-scale Slow time-scale

Fast time-scale:

 $\dot{x}_N(t/N) = F(x_N(t/N)).$

Slow time-scale: If x(t) tends to a fixed point x^* : $(y_N(t))$ converges to (y(t)) with

 $\dot{y}(t) = G(x^{\star}, y(t))$

A Deterministic Example Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

 $\dot{x}_N(t) = \frac{NF(x_N(t), y_N(t))}{\dot{y}_N(t)},$ $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Fast time-scale Slow time-scale

A Deterministic Example Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

 $\dot{x}_N(t) = NF(x_N(t), y_N(t)),$ Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Fast time-scale: When $N \to \infty$, $y_N(t/N) \approx z$ $\dot{x_N}(t/N) \approx F(x(t/N), z)$

A Deterministic Example Deterministic sequences $(x_N(t))$ and $(y_N(t))$ with:

 $\dot{x}_N(t) = NF(x_N(t), y_N(t)),$ Fast time-scale $\dot{y}_N(t) = G(x_N(t), y_N(t))$ Slow time-scale

Fast time-scale: When $N \to \infty$, $y_N(t/N) \approx z$ $\dot{x_N}(t/N) \approx F(x(t/N), z)$

Slow time-scale: If $(x_N(t))$ tends to a fixed point x_Z^* : $(y_N(t))$ converges to (y(t)) with

$$\dot{y}(t) = G\left(x_{y(t)}^{\star}, y(t)\right)$$

Stochastic vs Deterministic

	Deterministic	Stochastic
Fast process	ODE	Markov process
	$(\mathbf{x}(t))$	(X(t))
	$\dot{x} = F(x(t), y)$	$\Omega(\mathbf{y})$
Slow process	ODE	Markov process
	$(\mathbf{y}(t))$	(Y(t))
	Fixed point	Stationary
Equilibrium	X_{V}^{\star}	distribution
		π_y
Convergence	Regularity of	Regularity of
	$y \mapsto x_y^{\star}$	$y \mapsto \pi_y$

Stochastic vs Deterministic

	Deterministic	Stochastic
Fast process	ODE	Markov process
	$(\mathbf{x}(t))$	(X(t))
	$\dot{x} = F(x(t), y)$	Ω(𝒴)
Slow process	ODE	Markov process
	$(\mathbf{y}(t))$	(Y(t))
	Fixed point	Stationary
Equilibrium	X_{V}^{\star}	distribution
		π_y
Convergence	Regularity of	Regularity of
	$y \mapsto x_y^{\star}$	$y \mapsto \pi_y$
References

Statistical mechanics: [Bogolyubov 62]

Stochastic calculus:

[Khasminskii 68], [Papanicolaou et al. 77], [Freidlin-Wenzell 79].

Loss networks:

[Kurtz 92], [Hunt-Kurtz 94]

Contributions

The Law of the Jungle:

- Stochastic averaging
- Scaling over the stationary distributions

Flow-Aware CSMA:

- Suboptimality of CSMA (mono/multi-channel)
- Optimality of Flow-Aware CSMA (mono/multi)
- Time-scale separation

An unreliable file system:

- Three time-scales
- Stochastic averaging (simpler proof)

Transient properties of Engset and Ehrenfest:

- Positive martingales
- Asymptotics on hitting times

Contributions

The Law of the Jungle:

- Stochastic averaging
- Scaling over the stationary distributions

Flow-Aware CSMA:

- Suboptimality of CSMA (mono/multi-channel)
- Optimality of Flow-Aware CSMA (mono/multi)
- Time-scale separation

An unreliable file system:

- Three time-scales
- Stochastic averaging (simpler proof)

Transient properties of Engset and Ehrenfest:

- Positive martingales
- Asymptotics on hitting times

Example 1: An Unreliable File System

Each copy is lost at rate μ

A file with 1 copy can be backed up

A file with 1 copy can be backed up

A file with 0 copies is lost

A file with 0 copies is lost

A file with 0 copies is lost

What is the decay rate of the network?

 $X_i(t)$: number of files with *i* copies at time *t*.

 $(X_0(t), X_1(t), X_2(t))$: a transient Markov Process.

$$X_0(t) + X_1(t) + X_2(t) = \beta N.$$

A unique absorbing state (βN , 0, 0).

 $X_i(t)$: number of files with *i* copies at time *t*.

 $(X_0(t), X_1(t), X_2(t))$: a transient Markov Process.

$$X_0(t) + X_1(t) + X_2(t) = \beta N.$$

A unique absorbing state (βN , 0, 0).

Different Behaviors

Three time scales:

$$\begin{cases} t \to t/N \\ t \to t \\ t \to Nt \end{cases}$$

Three regimes:

Overload: $2\beta > \rho = \lambda/\mu$, Critical load: $2\beta = \rho$, Underload: $2\beta < \rho$.

Time scale: $t \rightarrow t/N$

Time scale: $t \rightarrow t/N$

 $(L_1(t)): \text{ an } M/M/1 \text{ queue } \begin{cases} \text{ergodic if } 2\beta < \rho, \\ \text{transient if } 2\beta > \rho. \end{cases}$

Time scale: $t \rightarrow t/N$

(*L*₁(*t*)): an *M*/*M*/1 queue $\begin{cases}
ergodic if <math>2\beta < \rho, \\
\text{transient if } 2\beta > \rho.
\end{cases}$

No loss!

Time scale: $t \rightarrow t$ Overloaded network

If $2\beta > \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to a deterministic process $(x_0(t), x_1(t), x_2(t))$.

Time scale: $t \rightarrow t$ Overloaded network

If $2\beta > \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to a deterministic process $(x_0(t), x_1(t), x_2(t))$.

A fraction $N(\beta - \rho/2)$ is lost!

Time scale: $t \rightarrow t$ Underloaded network

If $2\beta < \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to $\begin{cases} x_0(t) = 0, \\ x_1(t) = 0, \\ x_2(t) = \beta. \end{cases}$ $\frac{\lambda}{2\mu}$ $-x_2(t)$: 2 copies β t

Time scale: $t \rightarrow t$ Underloaded network

If $2\beta < \rho$, $(X_0(t)/N, X_1(t)/N, X_2(t)/N)$ converges to $\begin{cases} x_0(t) = 0, \\ x_1(t) = 0, \\ x_2(t) = \beta. \end{cases}$ $\frac{\lambda}{2\mu}$ ----- $-x_2(t)$: 2 copies β t

No significant loss!

Time Scale $t \rightarrow Nt$

$$\lim_{N\to+\infty}\left(\frac{X_0(Nt)}{N}\right)=\Psi(t),$$

where $\Psi(t)$ is the unique solution of

$$\Psi(t) = \mu \int_0^t \frac{2\mu(\beta - \Psi(s))}{\lambda - 2\mu(\beta - \Psi(s))} \,\mathrm{d}s.$$

Time Scale $t \rightarrow Nt$

$$\lim_{N\to+\infty}\left(\frac{X_0(Nt)}{N}\right)=\Psi(t),$$

where $\Psi(t)$ unique solution in $(0, \beta)$ of

$$(1 - \Psi(t)/\beta)^{\rho/2} e^{\Psi(t)+t} = 1.$$

$t \rightarrow Nt$ is the "correct" time scale to describe

A Stochastic Averaging Phenomenon

Fast time scale: At "time" Nt, $(X_1(Nt+u/N), u \ge 0)$: an M/M/1 with transition rates: +1 at rate $2\mu(\beta - \Psi(t))$ -1 at rate λ .

A Stochastic Averaging Phenomenon

Slow time scale: $(X_0(Nt)/N)$ "sees" only X_1 at equilibrium:

$$\Psi(t)^{"} = "\mu \int_0^t \mathbb{E}(X_{1,s}(\infty)) \,\mathrm{d}s = \int_0^t \frac{2\mu(\beta - \Psi(s))}{\lambda - 2\mu(\beta - \Psi(s))} \,\mathrm{d}s.$$

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N,g
angle = rac{1}{N}\int_0^{Nt}g\left(X_1^N(s),s
ight)\mathrm{d}s$$

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N,g\rangle = rac{1}{N}\int_0^{Nt}g\left(X_1^N(s),s
ight)\mathrm{d}s$$

Step 2 Control of limits of (μ^N) :

$$\lim_{N \to \infty} \frac{1}{N} \int_0^{Nt} X_1^N(s) \, \mathrm{d}s = \Psi(t) = \int_0^t \langle \pi_s, I \rangle \, \mathrm{d}s$$
$$\int_0^t \pi_s(\mathbb{N}) \, \mathrm{d}s = t$$

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N,g\rangle = rac{1}{N}\int_0^{Nt}g\left(X_1^N(s),s
ight)\mathrm{d}s$$

Step 2 Control of limits of (μ^N) :

$$\lim_{N\to\infty}\frac{1}{N}\int_0^{Nt}X_1^N(s)\,\mathrm{d}s=\Psi(t)=\int_0^t\langle\pi_s,I\rangle\,\mathrm{d}s$$
$$\int_0^t\pi_s(\mathbb{N})\,\mathrm{d}s=t$$

Here: Proof by stochastic domination

Step 1 Radon measures: tightness of (μ^N) with

$$\langle \mu^N,g\rangle = rac{1}{N}\int_0^{Nt}g\left(X_1^N(s),s
ight)\mathrm{d}s$$

Step 2 Control of limits of (μ^N) :

$$\lim_{N \to \infty} \frac{1}{N} \int_0^{Nt} X_1^N(s) \, \mathrm{d}s = \Psi(t) = \int_0^t \langle \pi_s, I \rangle \, \mathrm{d}s$$
$$\int_0^t \pi_s(\mathbb{N}) \, \mathrm{d}s = t$$

Here: Proof by stochastic domination Step 3 Identification of π_s with martingale techniques and balance equations.
Decay Rate of the Network $T_N(\delta) = \inf \{ t \ge 0 : X_0^N(t) \ge \delta \beta N \}$

Theorem:

Conclusion

- Three different time scales
- A first example of stochastic averaging
- Asymptotics on a transitory property.

Extensions:

- Number of copies: $d > 2 \Rightarrow d 1$ times scales
- Decentralized back-up (mean-field)

Open problem:

- Modeling a DHT: geometrical considerations

Example 2: The Law of the Jungle

Context

Congestion control:

- Rate adjustment to limit packet loss
- Retransmission of lost packets

Context

Congestion control:

- Rate adjustment to limit packet loss
- Retransmission of lost packets

No congestion control:

- No rate adjustment
- Sources send at their maximum rate
- Coding to recover from packet loss

Context

Congestion control:

- Rate adjustment to limit packet loss
- Retransmission of lost packets

No congestion control:

- No rate adjustment
- Sources send at their maximum rate
- Coding to recover from packet loss

Does this bring congestion collapse?

Bandwidth Sharing Networks

[Massoulié Roberts 00]

- A flow: a stream of packets
- Flows are considered as a fluid
- Users divided in classes/routes
- Poisson arrivals/Exponential sizes
- Resource allocation determined by congestion policy

Bandwidth Sharing Networks

[Massoulié Roberts 00]

- A flow: a stream of packets
- Flows are considered as a fluid
- Users divided in classes/routes
- Poisson arrivals/Exponential sizes
- Resource allocation determined by congestion policy

Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates

Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates

Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates

Usually, α -fair policies are considered [MW00].

- Sources send at their maximum rate (1 or a)
- Tail dropping: At each link, output rates are proportional to input rates

Ergodicity Condition

Optimal ergodicity condition:

$$ho_0 +
ho_1 < 1$$
, $ho_0 +
ho_2 < 1$

where $\rho_i = \lambda_i / \mu_i$.

We know α -fair policies are optimal [BM02].

Ergodicity Condition

Optimal ergodicity condition:

$$ho_0 +
ho_1 < 1$$
, $ho_0 +
ho_2 < 1$

where $\rho_i = \lambda_i / \mu_i$.

We know α -fair policies are optimal [BM02].

What about our policy?

Fluid Limits

If $x_2 \gg 0$, class 2 uses virtually all the second link. If $(z_0(t), z_1(t), z_2(t))$ is a fluid limit with $z_2(0) > 0$,

$$\begin{cases} \dot{z}_{0}(t) = \lambda_{0}, \\ \dot{z}_{1}(t) = \lambda_{1} - \mu_{1} \frac{z_{1}(t)}{z_{0}(t) + z_{1}(t)}, \\ \dot{z}_{2}(t) = \lambda_{2} - \mu_{2}. \end{cases}$$

Fluid Limits

If $x_2 \gg 0$, class 2 uses virtually all the second link. If $(z_0(t), z_1(t), z_2(t))$ is a fluid limit with $z_2(0) > 0$,

$$\begin{cases} \dot{z}_0(t) = \lambda_0, \ \dot{z}_1(t) = \lambda_1 - \mu_1 rac{z_1(t)}{z_0(t) + z_1(t)}, \ \dot{z}_2(t) = \lambda_2 - \mu_2. \end{cases}$$

If $\rho_2 < 1$, $(z_2(t))$ reaches 0 in finite time.

Fluid Limits

Classes 0 and 1 are frozen: π_2^{α} is the stationary distribution of class 2

$$ar{\Phi}_0(lpha) = \mathbb{E}_{\pi_2^{lpha}}\left(\Phi_0\left(lpha, rac{lpha}{x_2 a + lpha}
ight)
ight).$$

Fluid Limits When $z_2(t) = 0$:

$$\begin{cases} \dot{z}_{0}(t) &= \lambda_{0} - \mu_{0} \bar{\phi}_{0} \left(\frac{z_{0}(t)}{z_{0}(t) + z_{1}(t)} \right), \\ \dot{z}_{1}(t) &= \lambda_{1} - \mu_{1} \frac{z_{1}(t)}{z_{0}(t) + z_{1}(t)}, \\ \dot{z}_{2}(t) &= 0. \end{cases}$$

with

$$ar{\Phi}_0(\pmb{lpha}) = \mathbb{E}_{\pi^{\pmb{lpha}}_2}\left(\Phi_0\left(\pmb{lpha}, rac{\pmb{lpha}}{x_2\pmb{a}+\pmb{lpha}}
ight)
ight).$$

Fluid Limits When $z_2(t) = 0$:

$$\begin{cases} \dot{z}_{0}(t) &= \lambda_{0} - \mu_{0} \bar{\phi}_{0} \left(\frac{z_{0}(t)}{z_{0}(t) + z_{1}(t)} \right), \\ \dot{z}_{1}(t) &= \lambda_{1} - \mu_{1} \frac{z_{1}(t)}{z_{0}(t) + z_{1}(t)}, \\ \dot{z}_{2}(t) &= 0. \end{cases}$$

with

$$ar{\Phi}_0(\pmb{lpha}) = \mathbb{E}_{\pi^{\pmb{lpha}}_2}\left(\Phi_0\left(\pmb{lpha}, rac{\pmb{lpha}}{x_2\pmb{a}+\pmb{lpha}}
ight)
ight).$$

Stochastic averaging

Ergodicity Conditions

Ergodicity conditions:

 $\rho_1 < 1, \ \rho_2 < 1,$ $\rho_0 < \overline{\phi}_0(1 - \rho_1)$

Optimal conditions:

$$\rho_1 < 1, \ \rho_2 < 1,
\rho_0 < \min(1 - \rho_1, 1 - \rho_2)$$

Ergodicity Conditions

Ergodicity conditions:

 $\rho_1 < 1, \ \rho_2 < 1,$ $\rho_0 < \overline{\phi}_0(1 - \rho_1)$

Optimal conditions:

$$\rho_1 < 1, \ \rho_2 < 1,
\rho_0 < \min(1 - \rho_1, 1 - \rho_2)$$

But:

$$\bar{\phi}_0(1-\rho_1) < \min(1-\rho_2, 1-\rho_1)$$

Ergodicity Conditions

Ergodicity conditions:

 $\rho_1 < 1, \ \rho_2 < 1,$ $\rho_0 < \overline{\phi}_0(1 - \rho_1)$

Optimal conditions:

$$\rho_1 < 1, \ \rho_2 < 1,
\rho_0 < \min(1 - \rho_1, 1 - \rho_2)$$

But:

$$\bar{\phi}_0(1 - \rho_1) < \min(1 - \rho_2, 1 - \rho_1)$$

Not optimal!

Impact of Maximum Rate a

Class 1: ρ_1

Impact of Maximum Rate a

Class 1: ρ_1 What happens when $a \rightarrow 0$?

Scaling the Maximum Rate *a* We freeze α and consider the process $(X_2^S(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

 $q(x_2, x_2 - 1) = \mu_2 \min\left(x_2 a, \frac{x_2 a}{\alpha + x_2 a}\right)$

Scaling the Maximum Rate *a* We freeze α and consider the process $(X_2^{S}(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

$$q(x_2, x_2 - 1) = \mu_2 \min\left(x_2 \frac{a}{S}, \frac{x_2 a/S}{\alpha + x_2 a/S}\right)$$
Time-scale: $t \mapsto St$

Scaling the Maximum Rate *a* We freeze α and consider the process $(X_2^{S}(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

$$q(x_2, x_2 - 1) = \mu_2 \min\left(x_2 \frac{a}{S}, \frac{x_2 a/S}{\alpha + x_2 a/S}\right)$$
Time-scale: $t \mapsto St$

$$(X_2^S(St)/S) \Rightarrow (x_2(t))$$
 with
 $\dot{x}_2(t) = \lambda_2 - \mu_2 \min\left(ax_2(t), \frac{x_2(t)a}{\alpha + x_2(t)a}\right)$

Scaling the Maximum Rate *a* We freeze α and consider the process $(X_2^{S}(t))$ with Q-matrix:

$$q(x_2, x_2 + 1) = \lambda_2,$$

$$q(x_2, x_2 - 1) = \mu_2 \min\left(x_2 \frac{a}{S}, \frac{x_2 a/S}{\alpha + x_2 a/S}\right)$$
Time-scale: $t \mapsto St$

$$(X_2^S(St)/S) \Rightarrow (x_2(t))$$
 with
 $\dot{x}_2(t) = \lambda_2 - \mu_2 \min\left(ax_2(t), \frac{x_2(t)a}{\alpha + x_2(t)a}\right)$

Fixed point:

$$x_2 = \frac{\rho_2}{a} \max\left(1, \frac{\alpha}{1-\rho_2}\right)$$

Scaling the Maximum Rate a

Scaling the Maximum Rate a

Convergence of processes ↓ Convergence of stationary distribution

Scaling the Maximum Rate a

Convergence of processes ↓ Convergence of stationary distribution

 $\lim_{a\to 0} \bar{\Phi}_0(1-\rho_1) = \min(1-\rho_1, 1-\rho_2)$ The policy is asymptotically optimal

Conclusion

- Analysis of equilibrium,
- Inversion of limits: scaling on stationary distributions
- Impact of access rates

Extensions:

- Linear networks with L links
- Second order scaling: speed of convergence.
- Upstream trees

Open problem:

- General acyclic networks

Example 3: Flow-Aware CSMA

Model

The network is represented by a conflict graph

For each node *i*:

- $X_i(t) \in \mathbb{N}$: number of flows at time t
- $Y_i(t) = 1$ if node is active at time t, 0 otherwise.

Model

The network is represented by a conflict graph

For each node *i*:

- $X_i(t) \in \mathbb{N}$: number of flows at time t
- $Y_i(t) = 1$ if node is active at time t, 0 otherwise.

Model

The network is represented by a conflict graph

For each node *i*:

- $X_i(t) \in \mathbb{N}$: number of flows at time t
- $Y_i(t) = 1$ if node is active at time t, 0 otherwise.

Conflict Graph λ_1 λ_2 λ_3 \downarrow \downarrow \downarrow

Schedules: Ø, {1}, {2}, {3}, {1,3}.

Optimal stability region: convex hull of schedules

Conflict Graph $\lambda_1 \qquad \lambda_2 \qquad \lambda_3$ $\downarrow \qquad \downarrow \qquad \downarrow$ $1 \qquad 2 \qquad 3$

Schedules: Ø, {1}, {2}, {3}, {1,3}.

Optimal stability region: convex hull of schedules In this example: $\{\rho_1 + \rho_2 \le 1, \rho_2 + \rho_3 \le 1\}$ with $\rho_i = \lambda_i / \mu_i$

Conflict Graph $\lambda_1 \qquad \lambda_2 \qquad \lambda_3$ $\downarrow \qquad \downarrow \qquad \downarrow$ 1 2 3

Schedules: Ø, {1}, {2}, {3}, {1,3}.

Optimal stability region: convex hull of schedules In this example: $\{\rho_1 + \rho_2 \le 1, \rho_2 + \rho_3 \le 1\}$ with $\rho_i = \lambda_i / \mu_i$

Stability region?

Standard CSMA

Standard CSMA

Optimal?

Standard CSMA

$$\xrightarrow{\text{Back-off}} \xrightarrow{\text{Transmission}} \xrightarrow{\text{Back-off}} \xrightarrow{\text{Back-off}} \xrightarrow{\sim} \exp(\alpha \mathbf{x_1}) \xrightarrow{\sim} \exp($$

The process (X(t), Y(t)) is difficult to analyze:

$$\xrightarrow{\text{Back-off}} \xrightarrow{\text{Transmission}} \xrightarrow{\text{Back-off}} \xrightarrow{\text{Back-off}} \xrightarrow{\sim} \exp(\alpha N x_1) \xrightarrow{\sim} \exp(\alpha N$$

The process $(X^{N}(t), Y^{N}(t))$ is difficult to analyze:

Idea: Separate network dynamics and flow dynamics. When $N \rightarrow \infty$, $(Y^N(t))$: classical loss network.

$$\xrightarrow{\text{Back-off}} \xrightarrow{\text{Transmission}} \xrightarrow{\text{Back-off}} \xrightarrow{\text{Back-off}} \xrightarrow{\sim} \exp(\alpha N x_1) \xrightarrow{\sim} \exp(\alpha N$$

The process $(X^{N}(t), Y^{N}(t))$ is difficult to analyze:

Idea: Separate network dynamics and flow dynamics. When $N \rightarrow \infty$, $(Y^N(t))$: classical loss network.

Stochastic averaging

Optimality of Flow-Aware CSMA

Theorem:

Flow-aware CSMA algorithm is optimal for any network.

Sketch of proof:

- Asymptotically behaves as Max-Weight.
- Deduce a Lyapunov function and apply Foster's criterion.

Conclusion

- An optimal and fully distributed channel access mechanism
- Limiting process: jump process
- Simplification of the problem

Extension:

- Multi-channel

Open problem:

- Initial problem still open

Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

Mathematical tools:

- Several examples of scalings
- A simpler proof for stochastic averaging

Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

Mathematical tools:

- Several examples of scalings
- A simpler proof for stochastic averaging

and...

- Scalings: A set of powerful tools
- Stochastic averaging: a not so rare phenomenon

Three examples:

- Capacity of an unreliable file system
- Law of the Jungle
- Flow-Aware CSMA

Mathematical tools:

- Several examples of scalings
- A simpler proof for stochastic averaging

and...

- Scalings: A set of powerful tools
- Stochastic averaging: a not so rare phenomenon

Many interesting open questions...

Thank you!